Pre Lab: Freezing Point Experiment

1)	Define: Colligative properties.
2)	List four Colligative properties.
3)	Define: Molal freezing point depression constant, K_f .
4)	Does the value of K_f depend on the nature of (solvent, or solute)?
5)	a) Show a freezing point of 6.00 °C on a cooling curve for a <u>pure</u> solvent.
	time
	b) If the freezing point of a pure solvent is 6.00 °C, will the solvent which is contaminated with a <u>soluble</u> material have a freezing point (higher than, lower than, or same as) 6.00 °C? Answer: Explain:
	c) Show a freezing point on the cooling curve for the above contaminated solvent.
	temperature
	Assume you had used a <u>well calibrated</u> thermometer to measure the freezing point of a solvent, can you tell from the cooling curve if the solvent is contaminated with soluble material?
	w can you tell?
~ <i>)</i> .	

(Next page)

7) Show the freezing point on a cooling curve for a solvent contaminated with <u>insoluble</u> material.
temperature
time
8) What is the relationship between ΔT and molar mass of solute?
The larger the value of ΔT , the (larger, or smaller) the molar mass of the solute?
9) If some <u>insoluble</u> material contaminated your solution after it had been prepared, how would this effect the measured ΔT_f and the calculated molar mass of solute? Explain:
10) If some <u>soluble</u> material contaminated your solution after it had been prepared, how would this effect the measured ΔT_f and the calculated molar mass of solute? Explain:
11) a) Why did we have to use the <u>same</u> thermometer for finding, the freezing point of both, solvent and solution?
b) If your thermometer was not calibrated (reading 0.50 °C below the correct
temperature), how would this effect your measured value of ΔT_f ?Answer: Explain:
12) How would the freezing point of a <u>solution</u> change if the unknown had ionized or dissociated? Answer:
13) If the solvent had been impure (that is, contaminated with soluble material);
 a) how would this effect ΔT_f? Explain; b) how would this effect the calculated molar mass? 14) Why would you use weighing paper instead of filter paper for weighing the unknown sample? Exercise:
The freezing point of a cyclohexane sample is 6.20 °C. A solution is prepared by dissolving 0.4660 g of an unknown solute in 36.0 g cyclohexane. The freezing point of
the solution is 4.11 $^{\circ}$ C. Calculate the molar mass of the unknown solute. K_f for
cyclohexane is 20.0 °C.kg/mole. <u>Answer</u> : 124 g/mole