CHEMISTRY 111 LECTURE
 EXAM IV Material

Part 1 Acid - Base Equilibria, continued

Chapter 15

(Page 685-699)

I. The Acid-Base Properties of lons and Salts

- Hydrolysis

Hydrolysis is the reaction of an ion with water to produce either $\mathrm{H}_{3} \mathrm{O}^{+}$(and a weak base) or OH^{-}(and a weak acid).
Anions derived from weak acids form basic solutions
Examples:

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}
$$

$\mathrm{NO}_{2}{ }^{-}$

Cations derived from weak bases form acidic solutions
Examples:
$\mathrm{NH}_{4}{ }^{+}$
Fe^{3+}
A. Salts that undergo Hydrolysis:

1. Salt of a Strong Base and Weak Acid will produce basic solutions:

Examples:
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

NaCN

2 Salt of a Strong Acid and Weak Base will produce acidic solutions
Examples
$\mathrm{NH}_{4} \mathrm{Cl}$

Hydroysis of metal Ions
AlCl_{3}
FeCl_{3}

3 Salt of a Weak Acid and Weak Base

$\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

4. Salt of a Strong acid and a Strong base NaCl

B. Problems

1. Salt of a Strong Base and Weak Acid

Calculate the pH of $0.10 \mathrm{M} \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. Ka for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.8 \times 10^{-5}$
Calculation of Kb

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons
$$

Initial

Change

at Equilibrium

2 Salt of a Strong Acid and Weak Base

Calculate the pH of 0.10 M NH 44 Cl . Kb for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$
Calculation of Ka

$$
\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons
$$

Initial
Change
at Equilibrium

3 Salt of a Weak Acid and Weak Base
a. $\mathrm{NH}_{4} \mathrm{CN}$ Ka for $\mathrm{HCN}=4.0 \times 10^{-10} \mathrm{~Kb}$ for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$
b. $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3} \mathrm{Ka}$ for $\mathrm{Al}^{3+}=1.4 \times 10^{-5} \mathrm{Ka}_{2}$ for $\mathrm{HSO}_{3}{ }^{-}=5.6 \times 10^{-8}$
5. a. Calculate the pH of a solution of $0.10 \mathrm{M} \mathrm{NaNO}_{2}$. Ka for $\mathrm{HNO}_{2}=4.5 \times 10^{-4}$

Initial
Change
at Equilibrium
b. Calculate the percent hydrolysis.
6. Calculate the pH of a solution if 25.0 mL of .20 M NaOH is added to 50.0 mL of. $10 \mathrm{M} \mathrm{HNO}_{2}$. Ka for $\mathrm{HNO}_{2}=4.5 \times 10^{-4}$

$1^{\text {st }}$ Reaction:

Reaction Eqn:
Before
Change
At after rxn

$\underline{2 \text { nd } E q u i l i b r i u m: ~}$

Equilibrium Eqn:

Initial

Change
at Equilibrium
7. Calculate the pH of a solution of $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$. Ka_{2} for $\mathrm{HS}^{-}=1.0 \times 10^{-14}$

Initial
Change
at Equilibrium

II. POLYPROTIC ACIDS

Polyprotic acids are acids which have more than one acidic hydrogen. Polyprotic acids ionize in a stepwise manner. Each step will have a Ka.
Examples:

Ionization of phosphoric acid

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} & \mathrm{Ka}_{1}=7.5 \times 10^{-3} \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{-2} & \mathrm{Ka}_{2}=6.2 \times 10^{-8} \\
\mathrm{HPO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{-3} & \mathrm{Ka}_{3}=1.0 \times 10^{-12} \\
\text { Since } \mathrm{Ka}_{1}>\mathrm{Ka}_{2}>\mathrm{Ka}_{3} \quad \Rightarrow & \mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{2} \mathrm{PO}_{4}^{-}>\mathrm{HPO}_{4}^{-2} \\
& \\
\text { Acid Strength }
\end{array}
$$

Consider a phosphoric acid solution:

Problems:

1. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$ in a 0.10 M solution of phosphoric acid:

The principal source of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is the first ionization of $\mathrm{H}_{3} \mathrm{PO}_{4}$. The $\mathrm{H}_{3} \mathrm{O}^{+}$produced by the 2nd and 3rd ionizations is negligible.
a. Ionization of $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad \mathrm{Ka}_{1}=7.5 \times 10^{-3}
$$

Initial
Change
at Equilibrium
2. Suppose that we wish the sulfide ion concentration to be $8.4 \times 10^{-15} \mathrm{M}$ in a saturated $(0.10 \mathrm{M})$ solution of $\mathrm{H}_{2} \mathrm{~S}$. What hydrogen ion concentration must be maintained by a buffer to give this S^{2-} concentration?

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-} & \mathrm{Ka}_{1}=1.1 \times 10^{-7} \\
\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{-2} & \mathrm{Ka}_{2}=1.0 \times 10^{-14}
\end{array}
$$

Caution!! The above condensed method can be used only when two of the three equilibrium concentrations are given and we wish to calculate the third.

Part 2 Aqueous lonic Equilibrium

Chapter 16

I. Buffers: Solutions That Resist pH Change

Buffers are solutions which resist a change in pH when small amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}is added or dilution occurs.
The buffering effect occurs because of the reaction of certain species with the $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-} Consider a mixture of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

A. Buffering systems:

1. A Weak acid with its salt (a salt that contains the conjugated base of the weak acid)

Example: HClO and NaClO
2. A Weak base with its salt (a salt that contains the conjugated acid of the weak base) Example: NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$
3. Acid Salts

Example: NaHCO_{3}
4. A Salt of a weak acid \& weak base

Example: $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
I. COMMON ION
A. The Effect of Adding a Common Ion to a Weak Acid/Base Equilibrium

The common-ion effect occurs when an ion that is in a weak acid/base equilibria is added to a equilibrium system.

Consider:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{1-}
$$

If acetate ion, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$, is added, according to Le Chattier's principle there will be a net reaction to the left until equilibrium is reestablished.

If HCl is added, according to Le Chantlier's principle there will be a net reaction to the left until equilibrium is reestablished.

Problems:
A 0.10 M acetic acid solution after adding enough $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ to make the solution $0.15 \mathrm{M} \mathrm{NaC} 2 \mathrm{H}_{3} \mathrm{O}_{2}$

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{1-}
$$

TYPE 1 Calculation:

Equilibrium
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{1-}$
Initial
Change \qquad
at Equilibrium

TYPE 2 Calculation:

Henderson - Hasselbalch equation:
Derivation: $\quad K a=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\log \mathrm{Ka}=\log \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\log \mathrm{Ka}=\log \left[\mathrm{H}^{+}\right]+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$-\log \left[\mathrm{H}^{+}\right]=-\operatorname{log~} \mathrm{Ka}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\Uparrow \mathrm{pH}$
Therefore:

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{pKa}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{pH} & =\mathrm{pKa}+\log \frac{[\text { Base }]}{[\text { Acid }]}
\end{aligned}
$$

1. Calculate the pH for a solution that contains $0.015 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ and $0.0050 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$? $k_{b}=1.8 \times 10^{-5}$

Initial
Change
at Equilibrium
2. Addition of an ion that is not common but does react.
100.0 mL of 0.2500 M NaOH is added to 250.0 mL of $.3500 \mathrm{M} \mathrm{HClO}_{2} \mathrm{~K}_{\mathrm{a}}=1.1 \times 10^{-2}$

$1{ }^{\text {st }}$ Reaction:

Reaction Eqn:
Before
Change
At after rxn
$\underline{2}^{\text {nd }}$ Equilibrium:
Equilibrium Eqn:
Initial
Change
at Equilibrium
3. How many moles of $\mathrm{NH}_{4} \mathrm{Cl}$ must be added to 1 - Liter of a 0.10 M solution of $\mathrm{NH}_{3}(\mathrm{aq})$ to adjust the pH to $9.000 . \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Initial
Change
at Equilibrium
4. What is the pH of a solution made by mixing $100 . \mathrm{mL}$ of 0.15 M HCl and $200 . \mathrm{mL}$ of 0.20 M aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$? Assume that the final volume of the buffer solution is $300 . \mathrm{mL} . \mathrm{K}_{\mathrm{b}}=4.6 \times 10^{-10}$

$1^{\text {st }}$ Reaction:

Reaction Eqn:

Before
Change
At after rxn

$2^{\text {nd }}$ Equilibrium:

Equilibrium Eqn:
Initial
Change
at Equilibrium
5. A Strong acid is added to a salt to form a Buffer Solution
a. How many moles of a strong monoprotic acid must be added to 1-L of a 0.40 M sodium formate, $\mathrm{NaCO}_{2} \mathrm{H}$, solution to prepare a buffer of a $\mathrm{pH}=4.35$. $\mathrm{K}_{\mathrm{a}}=1.77 \times 10^{-4}$

$1^{\text {st }}$ Reaction:

Reaction Eqn:

Before
Change
At after rxn

$2^{\text {nd }}$ Equilibrium:

Equilibrium Eqn:

Initial
Change
at Equilibrium

v. Titration Curves

A. A Weak Acid is titrated with a strong base

B. Four Regions

1.
2.
3.
4.

50.0 mls of 0.10 M HAc is titrated with 0.10 M NaOH

RXN: $\mathrm{HAc}+\mathrm{NaOH} \rightarrow \mathrm{NaAc}+\mathrm{H}_{2} \mathrm{O}$
NOTE: For a weak acid-strong base titration the $\mathrm{pH} \neq \mathbf{7}$ at the endpoint !

Region 1 = Before addition of base - WEAK ACID

0.00 mL of NaOH added

pH calculation

Region 2 = Buffer Region \{BEFORE THE EQUIVALENCE POINT\}- WEAK ACID

25.00 mL of NaOH added

pH calculation

Method 1

Method 2
pH calculation

PART 2: SOLUBILITY EQUILIBRIA

In an closed system a solid obtains a dynamic equilibrium with its dissolved state

Dynamic equilibrium: rate of dissolving = rate of crystallization (ppt)
If an "insoluble" or "slightly soluble" material is placed in water, an equilibrium is established when the rate of dissolution of ions from the solid equals the rate of precipitation of ions from the saturated solution.
A. Equilibria
$\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
B. Solubility Product constant, Ksp

1. Ksp of $\mathrm{Fe}(\mathrm{OH})_{3}=4.0 \times 10^{-38}$ \& Ksp of $\mathrm{Al}(\mathrm{OH})_{3}=1.6 \times 10^{-32}$
2. Solubility, s (as Molar solubility)
a. AgCl
b. Ag 2 S
3. Solutilbity Limit

Point where precipitation begins
C. Problems

1. At $25^{\circ} \mathrm{C} 0.00188 \mathrm{~g}$ of AgCl dissolves in one liter of water. What is the Ksp of AgCl ?
2. Calculate the solubility of $\mathrm{AgIO}_{3} \mathrm{Ksp}$ of $\mathrm{AgIO}_{3}=3.0 \times 10^{-8}$
3. Calculate the solubility of $\mathrm{HgBr}_{2} \quad \mathrm{Ksp}$ of $\mathrm{HgBr}_{2}=1.3 \times 10^{-19}$
4. Calculate the Ksp for silver chromate if $\mathbf{s}=6.5 \times 10^{-5} \mathrm{M}$
5. How many grams of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ will dissolve in 750.0 mls of $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}$ Ksp of $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}=1.57 \times 10^{-9}$
D. Common Ion Effect on Solubility

Solid is dissolved in a solution containing one of the ions that compose the salt $\mathrm{k}_{\mathrm{sp}}=1.8 \times 10^{-10}$

1. Calculate the solubility of AgCl in 0.1000 M NaCl
2. Calculate the solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ at $\mathrm{pH}=3.00 \quad \mathrm{k}_{\mathrm{sp}}=2 \times 10^{-32}$

E. Selective Separation

Separation of ions must lead to minimum contamination of each other.
$\mathrm{K}_{\text {sp }} \mathrm{Mg}(\mathrm{OH})_{2}=4 \times 10^{-11}$ $\mathrm{K}_{\text {sp }} \mathrm{Fe}(\mathrm{OH})_{3}=1 \times 10^{-38}$

1. Mg^{2+} and Fe^{3+} must be separated. $\left[\mathrm{Mg}^{2+}\right]=0.100 \mathrm{M}$ and $\left[\mathrm{Fe}^{3+}\right]=0.100 \mathrm{M}$ a. K_{sp} Equations
b. Fe^{3+} calculation
c. Mg^{2+} calculations
2. Will $\mathrm{Fe}(\mathrm{OH})_{3}$ ppt out if $\mathrm{Fe}^{3+}=0.010 \mathrm{M}$ and the $\mathrm{pH}=4.00$?
