## Gas Problems

Name $\qquad$

1. A compound contains only hydrogen and nitrogen and is $12.6 \%$ hydrogen by mass. A gaseous sample of the compound has density of $0.925 \mathrm{~g} / \mathrm{L}$ at 690 torr and $110{ }^{\circ} \mathrm{C}$. What is the molecular formula of the compound?
Setup:

Answer $\qquad$
2. $\mathrm{CaO}(\mathrm{s})$ reacts with $\mathrm{SO}_{2}(\mathrm{~g})$ according to the following equation:

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaSO}_{3}(\mathrm{~s})
$$

A 8.85 g mixture containing $\mathrm{CaO}(\mathrm{s})$ is placed in a $3.00-\mathrm{L}$ container. The container is filled with $\mathrm{SO}_{2}(\mathrm{~g})$ to a pressure of 749 . torr, at $20.0{ }^{\circ} \mathrm{C}$. After the reaction has gone to completion, the pressure inside the flask is 390 . torr, also at $20.0{ }^{\circ} \mathrm{C}$. What is the mass of $\mathrm{CaSO}_{3}(\mathrm{~s})$ produced? Assume that only $\mathrm{CaO}(\mathrm{s})$ in the mixture reacts with $\mathrm{SO}_{2}(\mathrm{~g})$. Setup:

Answer $\qquad$
3. A 4.430 g mixture containing $\mathrm{CaCO}_{3}(\mathrm{~s})$ is heated until all $\mathrm{CaCO}_{3}(\mathrm{~s})$ is decomposed completely.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(molar mass: $\mathrm{CaCO}_{3}=100.0, \mathrm{CaO}=56.1, \mathrm{CO}_{2}=44.0 \mathrm{~g} / \mathrm{mole}$ )
The $\mathrm{CO}_{2}(\mathrm{~g})$ liberated from the above reaction is collected over water at $27{ }^{\circ} \mathrm{C}$ and a total pressure of 750 . torr. The volume of $\mathrm{CO}_{2}(\mathrm{~g})$ is 432 ml and the vapor pressure of water at $27{ }^{\circ} \mathrm{C}$ is 26.7 torr. Calculate the percent $\mathrm{CaCO}_{3}(\mathrm{~s})$ in the mixture Setup:
$\qquad$
4. At 0.483 atm and $52^{\circ} \mathrm{C}$, the density of gas $\boldsymbol{X}$ is $2.35 \mathrm{~g} / \mathrm{L}$. A volume of 45.0 ml of gas $\boldsymbol{X}$ effuses through an apparatus in 3.60 seconds. The rate of effusion of gas $\boldsymbol{Y}$ through the same apparatus and under the same conditions is $18.4 \mathrm{ml} / \mathrm{sec}$. What is the molar mass of $Y$ ?
Setup:

Answer $\qquad$
5. Calculate the density of a gas at STP, if a given volume of the gas effuses through an apparatus in 6.60 min and the same volume of nitrogen at the same temperature and pressure, effuses through this apparatus in 8.50 minutes.
Setup:

Answer $\qquad$
6. If 34.0 L of $\mathrm{Cl}_{2} \mathrm{O}$ gas at 25.0 Celsius at 760.0 mm Hg decomposes to chlorine gas and oxygen gas. What is the total pressure after the reaction?
Setup:

Answer
7. Hydrogen gas and nitrogen gas combines to produce ammonia gas.

What is the total pressure at the end of the reaction if 3.0 grams of hydrogen gas reacts with 1.0 L of nitrogen gas at 10.0 atm at a 25.0 Celsius ?
Setup:

Answer $\qquad$
8. Consider the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})
$$

3.66 g of $\mathrm{Al}(\mathrm{s})$ is placed in a 7.46 L cylinder in an atmosphere of $\mathrm{S}(\mathrm{g})$ at 1.75 atm and a temperature of $160 .{ }^{\circ} \mathrm{C}$. Two minutes later, the pressure has dropped to 1.21 atm and the temperature had dropped to $120 . \varrho^{\circ} \mathrm{C}$.
a. Calculate the mass of $\mathrm{Al}(\mathrm{s})$ left unreacted.

Answer $\qquad$
b. Calculate the mass of $\mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})$ formed.

Setup:
$\qquad$
9. A chemist wants to find the empirical formula and the molecular formula of a compound that contains only carbon, hydrogen, and nitrogen. Complete combustion of 35.0 g of the compound produced 41.1 g H H .

A 65.2 g sample of the compound was analyzed for nitrogen, giving $35.6 \mathrm{~L} \mathrm{~N} \mathrm{~N}_{2}(\mathrm{~g})$ at 740 torr and $25{ }^{\circ} \mathrm{C}$.
The effusion rate of the compound as a gas was measured and found to be $38.2 \mathrm{ml} / \mathrm{min}$.
The effusion rate of argon gas under identical conditions in $58.0 \mathrm{ml} / \mathrm{min}$.
Find the empirical formula and the molecular formula of the compound.
Setup:
10. A compound contains only $\mathrm{C}, \mathrm{H}$, and N only. A chemist analyzes it by doing the following experiments. Complete combustion of 84.0 g of the compound converted all its carbon into $80.4 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$. A 156.5 g sample of the compound was analyzed for nitrogen, giving $85.44 \mathrm{~L} \mathrm{~N} \mathrm{~N}_{2}(\mathrm{~g})$ at 740 torr and $25{ }^{\circ} \mathrm{C}$. Calculate the empirical formula of the compound.
Setup:
$\qquad$
11. I37.0 g of solid Mercury (II) oxide decomposes to mercury metal and oxygen gas. What is the final pressure in a 4.0 L container at 35.0 Celsius?

Setup:

Answer
12. A 60.0 ml cylinder is filled with a mixture of an unknown element $\mathrm{M}(\mathrm{g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ to partial pressures of 3.07 atm and 37.2 atm respectively, and a temperature of $30.0^{\circ} \mathrm{C}$. The cylinder is heated to a high temperature at which the binary compound, $\mathrm{M}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}}$ is produced. The cylinder is then cooled to a temperature at which $\mathrm{Cl}_{2}$ is a gas and the binary compound, $\mathrm{M}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}}$, is solid. The remaining $\mathrm{Cl}_{2}$ gas is transferred to another 60.0 ml cylinder, where the pressure at $30.0^{\circ} \mathrm{C}$ is 28.0 atm . Assuming that the unknown element, M , has reacted completely, find the empirical formula of the binary compound, $\mathrm{M}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}}$. Setup:

