PART II- REVIEW FINAL EXAM- CHEM 111

			Name	ney	
1. What is the net-ia. nitrous acid and HNO ₂ + No. ANSWA: HNO. b. potassium hydro K+OH+Answa: OH 2. Which of the ele Ba Mg a. largest atomic size. lowest electrone.	sodium hydr +0H - +0H - xide and hyd HF - +HF - ements given Cl T ze. Ba	oxide solutions Na++NO NOz+ Irofluoric acid K++F-+ F-+HzO below will have I b. highe	on that occurs ves are mixed. H20 vet- solutions are m H20 Total net-imic	ixed. ix	
3.a. Name the three i. <u>Soluble Sall</u>				as electrolytes. Electrolytem g bases	D)
	he list of sol	_	ong acids and s	ctrolyte, or non-electrolyte. strong bases to answer this i. HCN	
iv. HClO2 wear	0	NH ₄ BrO ₄	strong vi	i. C4H ₁₂ <u>non</u> elictrolyte	
4. Tell if a precipit (You must know t a. ammonium chlor b. barium nitrate a c. nickel (II) sulfat	he list of sol ride and lead nd potassium	ubility rules to (II) nitrate. a sulfate.	o answer this q	uestion) S)	
5. a. Define: isoeled of Electron b. Which of the foll Se ²⁻				number and configuration to size?	1
* Molas 34	35	36	38		
The high the nadius the nadius the redis number (36 u the the attro so device no of p	36 nuclear Chr shells (1 ative parce ases Lui notons).	inge (* of the hindred Se 2 - u	protous), the smaller ls) contract due to nucleus. esing atomic ill have the largest	-

6. Write an equation illustrating
a. the heat of formation of of LiCl(s) Li(s) + $\frac{1}{2}$ Cl(s) Li(S)
b. the lattice energy of CsBr(s) $(s + (g) + Br - (g)) \longrightarrow (s Br (s))$ c. the dissociation energy of Cl ₂ (g) $= (0.16)$
$\mathcal{L}(\mathcal{L})$
d. the sublimation energy of Mg (s) \longrightarrow Mg (g)
d. the sublimation energy of Mg (s) e. the electron affinity of I(g) $T(g) + 1e^{-} \rightarrow T(g)$
g) the first ionization energy of $Ca(g)$ $(a (g) \rightarrow (a^{+}(g)) + 1e^{-}$
7. Consider the types of crystalline solids: a) ionic, b)metallic, c)covalent network, and d) molecular to answer the questions given below: Which conducts electricity in the solid state?
8. List the major intermolecular force in each of the following a) H ₂ b) NH ₃ c) OCl ₂ (bent geometry) d) CH ₄ (tetrahedral geometry) Lindan hydrogen dipole dipole
9. Define: molal boiling point elevation constant, Kb. The increase in B. P. of a solute dissolving solute in I kg ob solvent If Kb for water is 1.86 °C.kg/mole. How many units of degrees will a solution of 1.00 m
If K _b for water is 1.86 °C.kg/mole. How many units of degrees will a solution of 1.00 m
Mg(C ₂ H ₃ O ₂) ₂ rise in temperature? 3 mole of ims 1.86 °C of mole of ims
10. A large value of an equilibrium constant, like 10^{+7} , indicates that the position of equilibrium lies further to the (right, of left)
11. Define: Normal boiling point of a liquid at ratm.

27. The amount of phosphorus in a 17.50 g sample of a compound was determined by
converting the phosphorus to $Ca_3(PO_4)_2(s)$. The $Ca_3(PO_4)_2$ weighed 28.55 g . What is the
percent phosphorus in the original sample? (molar mass: $Ca_3(PO_4)_2 = 279.3$ g/mole)
Setup: 28.559 $(a_3(PQ_4)_2)$ (1 mole $(a_3(PQ_4)_2)$ 1 mole $(a_3($
$\frac{6.349 P}{17.50 g compound} \times 100 + 36.2\%$ 28. Draw the Lewis electron dot structure for the following: Answer
a. SO_3^{2-} b. $HClO_3$ (Cl is chlorine)
a. 503
[0 - 5 - 0 0 0 - H
29. Find the concentration of [Na ⁺] after mixing 12.5 ml of 0.320 M NaNO ₃ and 8.44 ml
of 0.540 M Na3PO4. , 0125 & (-320 mole NaNO) (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Setup:
00 844 (540 more Na Py) (3 motes 1097) = 13.6 × 10 mote 1097
29. Find the concentration of [Na ⁺] after mixing 12.5 ml of 0.320 M NaNO3 and 8.44 ml of 0.540 M Na ₃ PO ₄ . •0125 l (-320 mole NaNO ₃) (\frac{1 \text{ Wole Na+}}{1 \text{ mole Na NO ₃ }) = 4.00 \text{ x io mole Na Na ⁺ } Setup: •00 844 l (-540 mole Na PU) (\frac{3 \text{ mole Na+}}{1 \text{ mole Na} PU}) = 13.6 \text{ x io } \frac{3}{200} \text{ mole Na+} mole Na+
02098 Answer
30. Consider the hypothetical equilibrium: 3 C + 4 B 2 A + 3 D
If 3 moles of C and 4 moles of B are placed in a 4.00 liter container and allowed to reach
equilibrium, the mixture is found to contain 1.5 moles of D. What is the amount of C at equilibrium?
•
Setup: 1.5 moles Deamed (3 moles Crear) = 1.5 mole C 3 moles Deamed 3 moles Deamed 3 moles Crear = 1.5 mole C initial - 1.5 moles Crear Answer: -6- Answer: -6-
3 moles Civital - 1.5 moles Creak = 1.5 mole C
Answer:
equilibriuly