WORKSHEET-SOLIDS

Set A:

1. Indicate the **type of crystalline** solid each of the following would form upon crystallization. Tell what **type of particles** are located at the lattice points and the **types of attractive forces** that exist between the particles.

Chemical	Type of crystalline solid	Type of particles at lattice points	Attractive forces between lattice points
SiC			
HBr			
Cu			
Br ₂			
NH₄CIO ₃			

2. Crystalline aluminum has cubic structure. The unit edge length is 4.440×10^{-8} . The density of solid aluminum is 4.096 g/cm^3 . Calculate the number of aluminum atoms in one unit cell.

Answer=8.00 atoms/unit cell

3. The volume of a manganese **atom** is 9.21 x 10⁻²⁴ cm ³. Manganese crystallizes in a face-centered cubic system. What is the density of manganese? Answer: 7.34 g/cm³

Set B:

1. CaCl₂ (s) crystallizes in a cubic lattice. The unit cell has an edge of 4.77×10^{-8} cm. The density of CaCl₂ (s) is 6.80 g/cm³. How many formula units of CaCl₂ must there be per unit cell?

Answer: 4 formula units

2. A metal crystallizes in a cubic closest packing structure and its density is 9.25 g/cm³. What is the molar mass of the metal, if the volume of its **atom** is 8.23 x 10⁻²⁴ cm³?

Answer: 61.8 g/mole

3. a. Name the five types of crystalline solids.

i) _____ ii) _____ iii) _____ iii) _____ iv) _____ iv) _____

b. Indicate the **type of crystalline solid** each of the following would form upon solidification. Tell what **type of particles** are located at the lattice points and the **types of attractive forces** that exist between the particles.

Chemical	Type of crystalline solid	Type of particles at lattice points	Attractive forces
S ₈			
HF			
potassium permanganate			
Ni			
SiO ₂			

Set C :

- 1. Nickel has a cubic unit cell. The edge of the unit cell is 3.524×10^{-8} cm. The density of metallic nickel is 8.91 g/cm³. a) How many nickel atoms are in the unit cell?
- b) Calculate the radius of a nickel atom based on your result of question (a) above.

Answer: a) 4 atoms b) 1.24 x 10 ⁻⁸ cm

2. The volume of a metal **atom** is 7.24×10^{-24} cm³. The metal crystallizes in a cubic closest packing structure. The density of the metal is 8.77 g/cm³. What is the molar mass of the metal?

Answer: 51.5 g/mole

Chemical	Type of crystalline solid	Type of particle(s) at lattice point	Attractive forces between lattice points
NH4HSO4			
SiO ₂			
Si			
HCI			
AI			
l ₂			

3. Indicate the **type of crystalline solid** each of the following would form upon solidification. Tell what **type of particles** are located at the lattice points and the **types of attractive forces** that exist between the particles.

4. Manganese crystallizes in a face-centered cubic system. The radius of the manganese **atom** is 1.30×10^{-8} cm. What is the density of manganese? Answer: 7.32 g/cm3

5. Associate each of the solids: CsI, SiO₂, Ni, and SiCl₃H with one of the following sets of properties: a) A very hard solid subliming at 2900 ° C. _____

b) A yellowish solid having a melting point of 40 ° C and is a nonconductor of electricity in the molten state.

c) A lustrous solid melting at about 1600 ° C . Both the solid and the liquid are electrically conductors.

d) A white solid melting at about 700 ° C . The liquid is electrically conducting although the solid is not.