Cation III-Practice

For the following, write a procedure that will separate/identify if either or both are present or absent. <u>There are no other cations present</u>. Write net-ionic equations and observations. * NOTE: Do not write unnecessary procedures and reactions. They will be counted incorrect.
 **NOTE: Do not write a flow chart as your answer

a. CrO42- Al(OH)4-

2. For the following pairs of cations only one is definitely present. Give a **single** reagent/single step and observations that will separate the following cations. In addition to the single reagent you may use an acid, base, or heat. Write the corresponding net-ionic equations.

a. Ni^2+ and Al^3+

 For the following, write a procedure that will separate/identify if either or both are present or absent. Write net-ionic equations and observations. Other Cations may be present. * NOTE: Do not write unnecessary procedures and reactions. They will be counted incorrect.
 **NOTE: Do not write a flow chart as your answer!!

Fe³⁺, Al³⁺

4. An unknown may contain one or more from the Cation III group, but no other cations groups may be present. After studying the procedure and observations, <u>Give those cations which are present</u>, <u>absent</u>, and <u>those whose presence is questionable</u>. **Give reasons and confirmation reaction equations for your conclusions** on the next page.

Procedure	Observations				
1. The pH was adjusted with NaOH to 8 with universal indicator paper. Then, an excess amount of NaOH was added. H_2O_2 was added and the sample was mixed heated and centrifuged.	Black ppt formed				
The supernatant was transferred to another test tube (see step 5), and the ppt was washed-see step 2					
2. <u>PPT from step 1</u> a HNO ₃ and HCI was added.	ppt dissolved				
 b. NH₃ was added until the soln was basic. An excess amount of NH₃ was added. 	A dark brown ppt formed				
c. The ppt was washed, centrifuged (see step 4), and the supernatant was transferred to another test tube – see step 3					
3. Supernatant from step 2					
Dil acetic acid was added to the supernatant until the soln was acidic. $\ensuremath{NH}\xspace_3$ and DMG was added.	A tan colored supernatant formed.				
4. <u>PPT from step 2</u>					
The ppt was divided into two parts-1/3 and 2/3					
 a. HNO₃ and NaBiO₃ was added to the 2/3 part. b. HCl and heat was added to the 1/3 part. The resulting solution was divided into two equal parts: 	The mixture was a light brown color				
(1) To the first part-> K₄Fe(CN) ₆ was added	A deep blue ppt formed				
(2) To the second part-> KSCN was added	A deep red solution formed				
 5. <u>Supernatant from step 1</u> a. 6 M HNO₃ was added until the solution was acidic. NH₃ was added until the solution was basic, then an excess amount was added. The mixture was heated, centrifuged and the supernatant was transferred into another test tube 	A white gelatinous ppt formed.				
6. PPT from step 5					
a. The precipitate was washed and then 6 M HNO_3 was added .	The white gelatinous ppt dissolved				
b. Aluminon was added and then 6 M $\rm NH_3$ until slightly basic.	A cherry red "lake" precipitate was produced				

7. Supe	ernatant from step 5	
b.	The supernatant was acidified with acetic acid and a small amount of sodium acetate was added. BaCl ₂ was added.	A white ppt formed
C.	The precipitate was washed. 2 drops of 6 M HNO ₃ , was added , followed by 10 drops of DI water. In the hood, 10 drops of ether and 1 drop of 3% H ₂ O ₂ was added	PPT dissolved
C	was added.	
Superna	atant is divided in 1/2	
d.	To the the first 1/2 of the supernatant, 3 drops of dithizone (phenylthiocarbazone) was added.	A grayish color formed
e.	With the remainder $1/2$ of the supernatant, 6 M HCl was added until acidic, followed by the addition of 3 drops of 0.3 M K4Fe(CN)6.	A small amount of orange ppt formed

Give those cations which are present, absent, and those whose presence is questionable. Give reasons and the confirmation reaction equation for each of your conclusions

Ni is questionable. A tan colored supernatant was formed and there was no mention of an orange-red ppt forming when DMG was added in step 3 \rightarrow (No eqn needed here b/c Ni is questionable)

Mn

Со

Al

Cr

Fe

Zn

4/19/11

Cation III Separation Reactions

H ₂ O ₂ -	F	Mn (OH	[) ₂	+	H ₂ O –	>	Mn(D ₂ +	OH	-	(unbala	nced)
Cr (OH)	_ 4	+	H_2O_2	+	H ₂ O		-> Cr	°O4 ²⁻	+	ОН⁻	(unbala	anced)
2H ₃ O ⁺	+	2C1	:O ₄ ²⁻	\$	Cr_2O	2- 7	+	3н ₂ 0				
Co ³⁺	+	3SCI	1_	+ 3	[0=C (0	CH ₃) ₂]]	-> Co	(SCN) ₃ [O=C	C(CH ₃)	3]3
Ni(NH ₃) ₆ 2+	+	2 (0	CH ₃) ₂ C	2 (NOH)	2	->	2NH	(4 ⁺ +	NiC ₈ H	14 N 4O4	+ 4NH ₃
2MnO ₂	+	3BiO	3	+ 1	0н⁺ -	>	2MnO	4 -	+ :	3Bi ⁺³	+	5H ₂ O
4Fe ³⁺	+	3Fe	e (CN)	4- 6	>	Fe4	[Fe (CN) ₆]	3			
Fe ⁺³	+	5 H ₂ O	+	SCN⁻		·> F	e (H ₂ C)) ₅SCI	J ²⁺			
2H₃O ⁺	+	2C1	:O ₄ ²⁻	\$	Cr_2O	2- 7	+	3H ₂ O				
4 H ₂ O ₂	+ ($2r_2O_7^{2-}$	+ 2	H_2O^+	≒ 5⊞	I ₂ O -	+ 2	2CrO ₅				
DPTC	+	Zn ²⁻	F	>	Zn-	DPTC						
*Note:	DPT	C is D	iphen	ythioc	carbazo	ne/Di	thizo	ne				
3Zn ²⁺	4	⊦ K4	[Fe (CN) ₆]		·>	Zn ₃ K ₂	[Fe (C	CN) ₆]	2		