Balancing Oxidation-Reduction Reactions

Name : _____

APPLICATION OF PRINCIPLES

- 1. Show the change in oxidation number (give number of electrons gained or lost *per atom*: e.g., 3*e*-gained) in the following reactions:
 - (a) $NO_{2-} \rightarrow NO_{3}$
 - (b) $SO_2 \to S_2^{2^-}$
 - (c) $MnO_4 \rightarrow MnO_2$
 - (d) $KCIO_2 \rightarrow KCI$
 - (e) $CrO_4 \xrightarrow{2^-} \rightarrow Cr_2O_7^{2^-}$
 - (f) HCOOH \rightarrow HCHO
- 2. Write the half-reaction equation for the oxidation of

(a) NO_2^- to NO_3^- (acidic)

- (b) H_2S to SO_4^{2-} (acidic)
- (c) NH_4 ⁺ to NO_3^- (acidic)
- (d) H_2O_2 to O_2 (g) (basic)
- 3. Write the half-reaction equation for the following:

(a) $SO_3^{2^-}$ to H_2S (acidic)(b) $MnO_4^{1^-}$ to MnO_2 (basic)(c) HO_2^- to OH^- (basic)(d) HCOOH to CH_3OH (acidic)

- 4. Write the half-reaction equation for the following:
- (a) Cr(OH)₄⁻ to CrO₄²⁻ (basic) _____

(b) CIO ₃ ⁻ to CI ⁻ (acidic)	
(c) CIO^{-} to CIO_{4}^{-} (acidic)	
(d) $Cr_2O_7^{2-}$ to Cr^{3+} (acidic)	
(e) HCOOH to CO ₂ (acidic)	
(f) CH ₃ NO ₂ to CH ₃ NH ₂ (acidic)

5. Given the reactants and products, write balanced net ionic equations for the following reactions. (Supply H_2O , H^+ , or OH^- as needed.)

(a) Iron filings are added to FeCl₃ solution. Fe + Fe³⁺ \rightarrow Fe²⁺

(b) Bismuth metal is dissolved in hot concentrated HNO₃₋ and a brown gas is given off. Bi + NO₃⁻ \rightarrow Bi³⁺ + NO₂(g)

(c) A mixture of Na₂S. NaClO. and NaOH solutions is warmed, giving a suspended precipitate.

 S^{2-} + $CIO^{-} \rightarrow S^{0}$ + CI^{-}

(d) SO₂ gas is bubbled into K₂Cr₂O₇ solution (acidic). SO₂ + Cr₂O₇²⁻ \rightarrow Cr³⁺ + SO₄²⁻ 6. Give the formula of a product (derived from the first-named substance) that may be formed in the following reactions. (Note, in the example that any lower oxidation state compound is possible: but not any higher one. Some are more probable than others.)

<i>Example</i> . H_2SO_3 is treated with a reducing agent.	S. S ₂ ²⁻ . H ₂ S
(a) $HCIO_2$ is treated with a reducing agent.	
(b) H_2SO_3 is treated with an oxidizing agent.	
(c) SnCl ₄ is treated with zinc dust.	
(d) $Cr_2O_7^{2-}$ is treated with SnCl ₂ .	
(e) KMnO ₄ is treated with FeSO ₄ .	
(f) MnO ₂ is treated with concentrated HCI.	

- 7. Predict the products and write balanced net ionic equations for the following reactions.
 - (g) SnCl₂ is added to KMnO₄ solution (acidic) forming Mn^{2+} .

(h) Zinc dust is treated with dilute HNO_3 forming NH_4^+ .

(i) Oxalate in CaC_2O_4 is oxidized to CO_2 by KMnO₄ in acidic solution, forming Mn²⁺.