EXPERIMENT \& REPORT 2 DIMENSIONAL ANALYSIS

Chem 110 Lab
Name \qquad
Instructor's Initials \qquad
PURPOSE: The purpose of this laboratory exercise it to develop and practice the skill of dimensional analysis which is used in most chemistry calculations.
A. Metric-Metric Conversions

Solve each of the following Metric-Metric conversions using dimensional analysis and going through the basic unit. Give complete setups, including all UNITS. Be sure your answers are rounded to the correct number of significant figures. (Assume all numbers given are measured numbers)

1. Convert 4.2 microliters to liters
2. Convert 2.2 centimeters to millimeters
3. Convert 5.99 kilograms to decigrams
4. Convert 111 cubic centimeters to liters
5. Convert 8 square meters to square kilometers
6. Convert 33 square centimeters to square nanometers.
7. Convert 8.5×10^{3} square millimeters to square decimeters.
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
B. Solve each of the following problems, giving complete setups, including all UNITS. Be sure your answer is rounded to the correct number of significant figures. (Assume all numbers given are measured numbers)
15. $\frac{32.00 \text { miles }}{0.0035 \mathrm{hr}}$
16. $40.0 \mathrm{ft} . \times 3.0 \mathrm{lb}$.
17. $76.94 \mathrm{in} .+75.4 \mathrm{ft}$. (give the answer in feet)
18. $\left(3.6 \times 10^{6} \mathrm{~m}^{2}\right)^{1 / 2}$
19. $4.6 \times 10^{1} \mu \mathrm{~L}+2.975 \times 10^{1} \mu \mathrm{~L}+9.34 \times 10^{-1} \mu \mathrm{~L}$
20. $\quad 5.9 \times 10^{4}+9.7 \times 10^{4}$
0.00976 sec -0.00971 sec
21. \qquad
22. $\frac{6.40 \times 10^{-350} \mathrm{sec}}{\left(4 \times 10^{8} \mathrm{sec}\right)^{3}}$
23. Convert $35.0 \mathrm{~m} / \mathrm{s}$ into $\mathrm{cm} / \mathrm{min}$
24. \qquad
25. Convert 65 mph into m / s
26. \qquad
C. Solve each of the following problems using dimensional analysis, giving complete setups, including all UNITS and LABELS. Be sure your answer is rounded to the correct number of significant figures. (Assume all numbers given are measured numbers.)
27. What is the density, in g / mL, of copper if a $23.6 \mathrm{~cm}^{3}$ sample has a mass of 210.4 g ?
28. \qquad
29. Gold has a density of $17.0 \mathrm{~g} / \mathrm{cc}$. A gold nugget weighing 0.678 kg was found. What was the volume ,in cubic centimeters, of this nugget?
30. \qquad
31. If 437.5 pounds of water has a volume of 7.0 cubic feet, what is the density of water in $\mathrm{g} / \mathrm{cm}^{3}$?
32. \qquad
33. A solution of nitric acid, HNO_{3}, has a density of $1.4337 \mathrm{~g} / \mathrm{mL}$. What is the mass, in grams, of $500.0 \mu \mathrm{~L}$ of this solution?
34. \qquad
35. A sprinter runs the one hundred yard dash in 9.95 seconds. What was the runner's speed in kilometers per hour?
36. \qquad
37. A certain very large diamond is 38 carats in mass. What is the weight, in pounds, of the diamond? $\left(1.000\right.$ carat $\left.=2.000 \times 10^{2} \mathrm{mg}\right)$
38. \qquad
D. AT HOME solve each of the following problems using dimensional analysis, giving complete setups, including all UNITS and LABELS. Be sure your answer is rounded to the correct number of significant figures. (Assume all numbers given are measured numbers.)
39. A car is traveling at 80.25 miles per hour on the freeway. What is the speed of the car in meters per second?
40. \qquad
41. Water has a density of $0.989 \mathrm{~g} / \mathrm{ml}$. What is the volume, in gallons, of 11.1 tons of water?
42. \qquad
43. What is the volume, in ml , of a 1.42565 kg brick of lead if its density is $11.34 \mathrm{~g} / \mathrm{cm}^{3}$?
44. \qquad
45. What is the mass, in grams, of a brick whose length is 0.25 in ., width is 0.0031 m , and height is 0.051 cm ; if its density is $2.67 \mathrm{~g} / \mathrm{cm}^{3}$?
46. \qquad

CONVERSION FACTORS

Metric-Metric Conversions

Metric-Metric Conversions are made through the basic unit.
Basic Metric Units: liter (L), meter (m), and gram (g).
Metric Prefixes: The one or two letter abbreviation for a metric prefix is written to the left of the abbreviation for one of the basic units. These prefixes have the following meanings. (The prefixes you are to memorize are given in boldface type.)

mega- (M)	means 1,000,000 or	10^{6} times the basic unit
kilo- (k)	1,000	10^{3}
hecto- (h)	100	10^{2}
deka- (da)	10	10^{1}
deci- (d)	0.1	10^{-1}
centi- (c)	0.01	10^{-2}
milli- (m)	0.001	10^{-3}
micro- (H)	0.000001	10^{-6}
nano- (n)	0.000000001	10^{-9}
pico- (p)		10^{-12}
femto- (f)		10^{-15}

Metric-English (American) Conversions

English-Metric Conversion Factors
NOTE: Assume that those numbers with no decimal written are exact numbers.

ENGLISH-ENGLISH CONVERSIONS

English-English Conversions Factors
Note: All relationships are exact

MASS (weight)	VOLUME	LENGTH
1 ton = 2000 pounds	4 quart $=1$ gallon	3 feet = 1 yard
16 ounces $=1$ pound	1 quart = 2 pints	1 foot $=12$ inches
	16 fluid ounces $=1$ pint 2 cups $=1$ pint	1 mile $=5280$ feet
$\begin{aligned} & \text { gallon = gal } \\ & \text { pint = pt. } \end{aligned}$	ABBREVIATIONS: quart $=q$ t. ounce $=o z$.	$\begin{aligned} & \text { pound = lb. } \\ & \text { Inch }=\text { in. } \end{aligned}$

