Chem. 110
Fall 2003
Name
EXAM 4
Activity series of metals and formula weights are presented on the last page

Part 1

1. For each of the following reactants, predict the products and complete and balance the equations with formulas, symbols, and coefficients. Write the correct physical state (g), (I), (s), (aq). State the type of reaction. (25 points)
a. Calcium is added to water

Equation: \qquad
Type of reaction: \qquad
b. Metallic aluminum reacts with Fluorine gas

Equation: \qquad
Type of reaction: \qquad
c. Hexane gas $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ burns in oxygen

Equation: \qquad
Type of reaction: \qquad
d. Barium oxide is added to water

Equation: \qquad
Type of reaction: \qquad
e. Lithium carbonate is heated

Equation: \qquad
Type of reaction: \qquad
2. Write the molecular equation, with physical states [(g), (I), (s), (aq)], total ionic and net ionic equations for each of the following reactions. All equations must be balanced (22 points)
a. Solutions of ammonium acetate and calcium sulfate are mixed

Molecular: \qquad
Total: \qquad

Net: \qquad
b. Barium sulfate solution is added to potassium hydroxide solution

Molecular: \qquad
Total: \qquad

Net: \qquad
c. Aluminum is added to a nitric acid solution

Molecular: \qquad
Total: \qquad

Net: \qquad
d. Solutions of sodium sulfite and nitric acid are mixed

Molecular: \qquad
Total: \qquad

Net: \qquad

Problems For the following problems show all work, correct units (throughout the problem) and significant figures. Present your work in an organized fashion. (Use dimensional analysis) Balance the equation first.

1. Copper reacts with nitric acid in the following equation: (22 points) $\ldots \mathrm{Ag}_{(\mathrm{s})}+\ldots \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \ldots \mathrm{AgNO}_{3(\mathrm{aq})}+\ldots \mathrm{NO}_{(\mathrm{g})}+\ldots \mathrm{H}_{2} \mathrm{O}$
a. How many grams of silver are needed to produce 168.26 moles of silver nitrate?

Answer:
b. How many molecules of water are produced at the same time that $\mathbf{4 2 . 5}$ grams of silver nitrate are produced?

Answer:
c. What is the molar concentration of nitric acid if it takes 450.0 mls of the acid to produce 3.44×10^{24} molecules of nitrogen monoxide?

Answer: \qquad
2. $\quad 35.02 \mathrm{ml}$ of 4.0 M of Aluminum nitrate and 50.0 g of potassium carbonate react according to the following equation: (19 points) (Fill in the blank spaces in the equation first.)
$\left.\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\ldots \mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow \quad \mathrm{KNO}_{3}\left(_\right)+\ldots \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3(}\right)$
a What is the limiting reactant?

Answer: \qquad
b What is the maximum mass (in grams) of precipitate produced?

Answer: \qquad
c How many grams of aluminum nitrate remain after the reaction is complete?

Answer:
d How many grams of potassium carbonate remain after the reaction is complete?

Answer:

/19
2. Under appropriate reaction conditions PCl_{3} and $\mathrm{H}_{2} \mathrm{O}$ produce Phosphorous acid and Hydrochloric acid according to the equation

$$
\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}
$$

a) What is the theoretical yield (in grams) of phosphorous acid if $9.44 \times 10{ }^{24}$ molecules of water and 250.0 g of phosphorous trichloride are mixed? (16 points)

Answer:

b) If the percent yield of hydrochloric acid is $\mathbf{7 6 . 2 \%}$, what is the actual yield?

Answer: \qquad

Activity Series for common metals and hydrogen
K
Na
Ca
Mg
Al
Zn
Cr
Fe
Ni
Sn
Pb
H
Cu
Hg
Ag
Pt
Au

	Molar mass
HNO_{3}	$63.02 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	$187.57 \mathrm{~g} / \mathrm{mol}$
NO	$30.01 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}$	$18.02 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	$331.22 \mathrm{~g} / \mathrm{mol}$
AlBr	$266.68 \mathrm{~g} / \mathrm{mol}$
PbBr_{2}	$367.00 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Al}_{2}\left(\mathrm{NO}_{3}\right)_{3}$	$213.01 \mathrm{~g} / \mathrm{mol}$
PCl_{3}	$137.32 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}_{3} \mathrm{PO}_{3}$	$82.01 \mathrm{~g} / \mathrm{mol}$
HCl^{2}	$36.46 \mathrm{~g} / \mathrm{mol}$
AgNO_{3}	$169.8731 \mathrm{~g} / \mathrm{mol}$
$\mathrm{K}_{2} \mathrm{CO}_{3}$	$138.2055 \mathrm{~g} / \mathrm{mol}$
KNO_{3}	$101.1032 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	$233.9898 \mathrm{~g} / \mathrm{mol}$

