For the following problems give the complete setups including correct units throughout the problem and in your answer. Be sure your significant figures are correct. Present your work in a neat and organized fashion. Use the molar masses provided on the last sheet of the exam.

1. A sample of air has a volume of 1676 mL at $-85.1^{\circ} \mathrm{C}$ and 225 mm Hg . What would be the new temperature, in ${ }^{\circ} \mathrm{C}$., if the volume is halved and the pressure is changed to 3.5 atm . (12 points)

Answer \qquad
2. 25.0 L of hydrogen gas is reacted with 15.0 L of nitrogen at $335^{\circ} \mathrm{C}$ and 4.35 atm . to produce of ammonia in the following reaction: (10 points)

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

How many Liters of ammonia are produced?

Answer \qquad
3. A 2.0 L sample of a gas at $73^{\circ} \mathrm{C}$ and 755 mm Hg is a mixture of helium and nitrogen. If the partial pressure of nitrogen is 355 mm Hg , what is the mass of the helium in the balloon? (10 points)

Answer \qquad
4. What is the density of a sample of diphosphorous pentoxide gas at 760 torr and $273^{\circ} \mathrm{C}$? (6 points)

Answer
5. If the temperature of a gas cut to $1 / 4$ at constant volume, what will happen to the pressure of the gas? (5 points) Show work.

Answer
/21 points
6. What will be the pressure, in atm, of 82.3 g of sulfur dioxide gas at $463^{\circ} \mathrm{C}$ if it has a volume of 33.2 L? (10 points)

Answer
7. A common laboratory preparation for oxygen gas involves the thermal decomposition of potassium chlorate:
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2}$ (g)
What volume, in liters, of oxygen will be formed at $283{ }^{\circ} \mathrm{C}$ and 3.00 atm when 2.25×10^{24} formula units of potassium chlorate is decomposed ? (10 points)
8. What is the molar mass of a gas if a of 38.56 L sample of the gas at .801 atm and $45.2^{\circ} \mathrm{C}$ has a mass of 71.88 g ? (8 points)

Answer
9. What volume of 1.500 M sulfuric acid is required to react with excess of aluminum to produce $3,255 \mathrm{~mL}$ of hydrogen gas at 975 torr and 385 K ? You must write the balanced equation for the reaction of Aluminum with sulfuric acid. (12 points)
\qquad
10. Calculate the total energy change when 425.0 g of steam $\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)$ at $105.2^{\circ} \mathrm{C}$ is changed to ice $\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right.$) at $-4.4{ }^{\circ} \mathrm{C}$. (18 points)

Heat of vaporization for $\mathrm{H}_{2} \mathrm{O}$ is $540 \mathrm{cal} / \mathrm{gram}$
Heat of fusion for $\mathrm{H}_{2} \mathrm{O}$ is $80 \mathrm{cal} / \mathrm{gram}$
Specific heat of liquid water is $1.00 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
Specific heat of solid water is $0.50 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
Specific heat of gaseous water is $.48 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$

Answer /18points
 Molar Masses grams/mole

$$
R=0.0821 \frac{L \text { atm }}{K \text { mole }} \text { or } \underset{K \text { mole }}{62.4 \frac{L}{L} \text { torr }}
$$

H_{2}	2.02
O_{2}	32.00
$\mathrm{H}_{2} \mathrm{O}$	18.02
KClO_{3}	122.55
KCl	74.55
SO_{2}	64.08
CO_{2}	44.01
$\mathrm{~N}_{2}$	28.01
HCl	36.46
$\mathrm{P}_{2} \mathrm{O}_{5}$	141.943
CO^{2}	28.01
NO_{2}	46.01

