Gas Stoichiometry CHEMISTRY 110

Name \qquad

Problem sets are due within the first 5 minutes of lecture on the due date. Significant figures must be correct. All setups must be shown for credit
1] Given the equation: $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g})--->\mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g})$
a. How many milliliters of nitrogen can be made from 13 L of chlorine and 10.0 L of ammonia gas at STP?

Answer \qquad
b. How many grams of chlorine must react to produce 16 L of nitrogen gas at 1.2 atm and $23^{\circ} \mathrm{C}$?

Answer \qquad
c. How many liters of ammonia gas at 244 torr and $35^{\circ} \mathrm{C}$ must be used to produce 2.3 kg of HCl gas?

Answer
2] How many liters of ammonia, measured at STP, must be used to produce of 2.65 grams of calcium hydride $6 \mathrm{Ca}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{~g})-->3 \mathrm{CaH}_{2}(\mathrm{~s})+\mathrm{Ca}_{3} \mathrm{~N}_{2}(\mathrm{~g})$

Answer \qquad
3] What volume of oxygen, measured at $35^{\circ} \mathrm{C}$ and 752 mm Hg , is required to "burn" 3.26 grams of calcium . $2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$--> $2 \mathrm{CaO}(\mathrm{s})$

Answer \qquad
4] How many mLs of $0.0246 \mathrm{M} \mathrm{AgNO}_{3}$ required to precipitate as silver chromate all the chromate ion in a solution containing 2.10 g sodium chromate

Sodium chromate + Silver nitrate --> Silver chromate (solid) + Sodium nitrate

Answer \qquad
5] How many mls of 0.50 M nitric acid are required to release 3.44 liters of hydrogen gas at 1.33 atm and $45^{\circ} \mathrm{C}$. $\mathrm{HNO}_{3}+\mathrm{Zn}--->\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$

Answer
6] What is the molarity of a 5.00 L sodium hydroxide solution that would completely react with 2.00 L of carbon dioxide gas measured at STP..

$$
\mathrm{NaOH}+\mathrm{CO}_{2}-->\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Find the Molarity of the sodium hydroxide solution

Answer \qquad
7] How many liters of dry hydrogen gas, measured at 796 torr and $25^{\circ} \mathrm{C}$, will be released by the decomposition of 255 milliliters of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 1.33 atm and $25^{\circ} \mathrm{C}$?

Write the balanced equation \qquad

Answer
8] For the following reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$---> $2 \mathrm{CO}_{2}(\mathrm{~g})$
1.5 mol of CO and 2.0 mol of oxygen react in a closed 10 L vessel.
a. How many moles of $\mathrm{CO}, \mathrm{O}_{2}$ and CO_{2} are present at the end of the reaction

Answer: Moles CO \qquad Moles O_{2} \qquad Moles CO_{2}
b. What will be the total pressure in the flask at 273 K ?

Answer \qquad

