Gas Stoichiometry

Chemistry 110

1] Given the equation: $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g})--->\mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g})$
a. How many milliliters of nitrogen can be made from 13 L of chlorine and 10.0 L of ammonia gas at STP?

$10.0 \mathrm{~L} \mathrm{NH}_{3} \times \frac{1 \mathrm{~L} \mathrm{~N}_{2}}{2 \mathrm{~L} \mathrm{NH}_{3}}=5.00 \mathrm{~L} \mathrm{~N}_{2}$

$13 \mathrm{LCl}_{2} \times \frac{1 \mathrm{~L} \mathrm{~N}_{2}}{3 \mathrm{LCl}_{2}}=4.3 \mathrm{~L} \mathrm{~N}_{2}$
Answer \qquad $4.3 \times 10^{3} \mathrm{~mL} \mathrm{~N} \mathbf{2}$
b. How many grams of chlorine must react to produce 16 L of nitrogen gas at 1.2 atm and $23^{\circ} \mathrm{C}$?
$\mathrm{n}_{\mathrm{N}_{2}}=\frac{(1.2 \mathrm{~atm}) \times(16 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{L-atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(273+23) \mathrm{K}}=0.790 \mathrm{~mol} \mathrm{~N}$
$0.790 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{3 \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}} \times \frac{70.1 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{~mol}}=1.66 \times 10^{2} \mathrm{~L} \mathrm{Cl}_{2}$
Answer \qquad
c. How many liters of ammonia gas at 244 torr and $35^{\circ} \mathrm{C}$ must be used to produce 2.3 kg of HCl gas?
$2.3 \mathrm{Kg} \mathrm{HCl} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{Kg}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.5 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{6 \mathrm{~mol} \mathrm{HCl}}=21 \mathrm{~mol} \mathrm{NH}_{3}$

$$
\mathrm{V}_{\mathrm{NH}_{3}}=\frac{\left(21 \mathrm{~mol} \mathrm{NH}_{3}\right) \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{Latm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(273+35) \mathrm{K}}{\frac{244 \mathrm{torr}}{760 \text { torr } / \mathrm{atm}}}=1.7 \times 10^{3} \mathrm{~L} \mathrm{NH}_{3}
$$

Answer
2] How many liters of ammonia, measured at STP, must be used to produce of 2.65 grams of calcium hydride
$\mathrm{Ca}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{~g})-->3 \mathrm{CaH}_{2}(\mathrm{~s})+\mathrm{Ca}_{3} \mathrm{~N}_{2}(\mathrm{~g})$

$$
2.65 \mathrm{~g} \mathrm{CaH}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CaH}_{2}}{42.1 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{CaH}_{2}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=0.940 \mathrm{~L} \mathrm{NH}_{3}
$$

Answer \qquad
3] What volume of oxygen, measured at $35^{\circ} \mathrm{C}$ and 752 mm Hg , is required to "burn" 3.26 grams of calcium .
$2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$--> $2 \mathrm{CaO}(\mathrm{s})$

$$
\begin{aligned}
& 3.26 \mathrm{~g} \mathrm{Ca} \times \frac{1 \mathrm{molCa}}{40.1 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Ca}}=0.0406 \mathrm{~mol} \mathrm{O}_{2} \\
& \mathrm{~V}_{2}=\frac{\left(0.0406 \mathrm{~mol} \mathrm{O}_{2}\right) \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(273+35) \mathrm{K}}{\frac{752 \mathrm{~mm}}{760 \mathrm{~mm} / 1 \mathrm{~atm}}}=1.04 \mathrm{~L} \mathrm{O}_{2}
\end{aligned}
$$

Answer \qquad containing 2.10 g sodium chromate

Sodium chromate + Silver nitrate --> Silver chromate (solid) + Sodium nitrate

$$
\mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{AgNO}_{3}-->\mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{NaNO}_{3}
$$

$2.10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CrO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CrO}_{4}}{161.8 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{AgNO}_{3}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CrO}_{4}} \times \frac{1000 \mathrm{ml} \mathrm{AgNO}}{3} 0.0246 \mathrm{~mol} \quad 1.05 \times 10^{3} \mathrm{ml}$
Answer \qquad

5] How many mls of 0.50 M nitric acid are required to release 3.44 liters of hydrogen gas at 1.33 atm and $45^{\circ} \mathrm{C}$.
$2 \mathrm{HNO}_{3}+\mathrm{Zn}$---> $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$
$\mathrm{n}_{\mathrm{H}_{2}}=\frac{(1.33 \mathrm{~atm}) \times(3.44 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{L-atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(273+45) \mathrm{K}}=0.175 \mathrm{~mol} \mathrm{H}_{2}$
$0.175 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{H}_{2}} \times \frac{1000 \mathrm{~mL}}{0.50 \mathrm{~mol} \mathrm{HNO}_{3}}=7.0 \times 10^{2} \mathrm{ml} \mathrm{HNO}_{3}$
Answer
6] What is the molarity of a 5.00 L sodium hydroxide solution that would completely react with 2.00 L of carbon dioxide gas measured at STP..

$$
2 \mathrm{NaOH}+\mathrm{CO}_{2}-->\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Find the Molarity of the sodium hydroxide solution

$$
\begin{aligned}
& 2.00 \mathrm{~L} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{22.4 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.179 \mathrm{~mol} \mathrm{NaOH} \\
& \mathrm{M}_{\mathrm{NaOH}}=\frac{0.179 \mathrm{~mol} \mathrm{NaOH}}{5.00 \mathrm{~L} \mathrm{soln}}=0.0357 \mathrm{M}
\end{aligned}
$$

Answer \qquad
7] How many liters of dry hydrogen gas, measured at 796 torr and $25^{\circ} \mathrm{C}$, will be released by the decomposition of 255 milliliters of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 1.33 atm and $25^{\circ} \mathrm{C}$?

Write the balanced equation $\quad \mathbf{2 H} \mathbf{2} \boldsymbol{- - >} \mathbf{2 H}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}}$

$$
\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{(1.33 \mathrm{~atm}) \times(0.255 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(298 \mathrm{~K})}=0.0139 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

$$
0.0139 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.0139 \mathrm{~mol} \mathrm{H}_{2}
$$

$$
\mathrm{V}_{\mathrm{H}_{2}}=\frac{\left(0.0139 \mathrm{~mol} \mathrm{H}_{2}\right) \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(298 \mathrm{~K})}{\frac{796 \mathrm{torr}}{760 \mathrm{torr} / 1 \mathrm{~atm}}}=0.325 \mathrm{~L} \mathrm{H}_{2}
$$

Answer
8] For the following reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad--->2 \mathrm{CO}_{2}(\mathrm{~g})$
1.5 mol of CO and 2.0 mol of oxygen react in a closed 10 L vessel.
a. How many moles of $\mathrm{CO}, \mathrm{O}_{2}$ and CO_{2} are present at the end of the reaction

$$
1.5 \mathrm{~mol} \mathrm{COX} \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{CO}}=1.5 \mathrm{~mol} \mathrm{CO}_{2}<--- \text {-amount made }
$$

$2.0 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=4.0 \mathrm{~mol} \mathrm{CO}_{2}$
$1.5 \mathrm{~mol} \mathrm{CO} x \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{CO}}=0.75 \mathrm{~mol} \mathrm{O}_{2}$ used
$2.0 \mathrm{~mol} \mathrm{O}_{\mathbf{2}}-\mathbf{0 . 7 5} \mathrm{mol} \mathrm{O}_{2}$ used $=1.25 \mathrm{~mol}=1.3 \mathrm{~mol}$ remaining
Answer: Moles CO \qquad 0 \qquad Moles O_{2} \qquad 1.3 \qquad Moles CO_{2} 1.5 \qquad
b. What will be the total pressure in the flask at 273 K ?

Total moles of gas = $1.3 \mathrm{~mol}+1.5 \mathrm{~mol}=2.8 \mathrm{~mol}$
$P=\frac{(2.8 \mathrm{~mol}) \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{mol}-\mathrm{K}}\right) \times(273 \mathrm{~K})}{10 \mathrm{~L}}=6.3 \mathrm{~atm}$ or $4.8 \times 10^{3} \mathrm{torr}$

