Chemical Formula Calculations

Chemistry 110

Set-ups must be shown where applicable. You will not receive credit for only answers shown Problem sets are due within the first five minutes of lecture on the due date.

1] What is the percentage by mass composition of Iron (III) oxide?

$$
\begin{aligned}
& \% \mathrm{Fe}=\frac{2 \times 55.85 \mathrm{~g}}{159.79 \mathrm{~g}}(100)=69.9 \% \mathrm{Fe} \\
& \% \mathrm{O}=100 \%-69.9 \%=30.1 \% \mathrm{O}
\end{aligned}
$$

2] Calculate the molar mass of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$ (Nitroglycerin, an explosive)

$$
\begin{array}{rll}
3 \mathrm{C}= & 3(12.0 \mathrm{~g} / \mathrm{mol}) & =36.0 \mathrm{~g} / \mathrm{mol} \\
5 \mathrm{H}= & 5(1.0 \mathrm{~g} / \mathrm{mol}) & =5.0 \mathrm{~g} / \mathrm{mol} \\
3 \mathrm{~N}= & 3(14.0 \mathrm{~g} / \mathrm{mol}) & =42.0 \mathrm{~g} / \mathrm{mol} \\
9 \mathrm{O}= & 9(16.0 \mathrm{~g} / \mathrm{mol}) &
\end{array}
$$

3] How many atoms are found in 1.55 grams in chlorine gas?
$2 \times 55.85 \mathrm{~g} / \mathrm{mol}$
$3 \times \quad 16.0 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}=159.7 \mathrm{~g} / \mathrm{mol}$
$1.55 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{71.0 \mathrm{~g}} \times \frac{6.02 \times 10^{23} \mathrm{Cl}_{2} \text { molecules }}{1 \text { mole }} \times \frac{2 \text { atoms } \mathrm{Cl}}{1 \text { molecule } \mathrm{Cl}_{2}}=2.62 \times 10^{22}$ atoms Cl

4] When silver was selling for $\$ 16.00$ per ounce, how many silver atoms could you buy for 10.00 dollars?
$\$ 10.00 \times \frac{10 z \mathrm{Ag}}{\$ 16.00} \times \frac{28.34 \mathrm{~g}}{10 \mathrm{z}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{107.9 \mathrm{gAg}} \times \frac{6.02 \times 10^{23} \mathrm{Ag} \text { atoms }}{1 \mathrm{~mol} \mathrm{Ag}}=9.88 \times 10^{22}$ atoms

5] How many grams of carbon are there in 14.0 g of $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) 4$ (tetraethyllead, a gasoline additive)?
$14.0 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}{323.4 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{8 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{12.0 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{C}}=4.13 \mathrm{~g} \mathrm{C}$

6] A mixture contains 10.00 g of NaBr and 5.00 g of BaBr_{2}. What is the total number of moles of bromide ions in the mixture?
$10.00 \mathrm{~g} \mathrm{NaBr} \times \frac{1 \mathrm{~mol} \mathrm{NaBr}}{102.9 \mathrm{~g} \mathrm{NaBr}} \times \frac{1 \mathrm{~mol} \mathrm{Br}}{1 \mathrm{~mol} \mathrm{NaBr}}=0.09718 \mathrm{~mol} \mathrm{Br}$
$5.00 \mathrm{~g} \mathrm{BaBr}_{2} \times \frac{1 \mathrm{~mol} \mathrm{BaBr}_{2}}{297.1 \mathrm{~g} \mathrm{BaBr}} 2 \times \frac{2 \mathrm{~mol} \mathrm{Br}}{1 \mathrm{~mol} \mathrm{BaBr}_{2}}=0.0337 \mathrm{~mol} \mathrm{Br}$
$0.09718 \mathrm{~mol} \mathrm{Br}+0.0337 \mathrm{~mol} \mathrm{Br}=0.1309 \mathrm{~mol} \mathrm{Br}$

7] Determine the moles of sodium in $7.22 \times 10^{100} \mathrm{~kg}$ of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
$7.22 \times 10^{100} \mathrm{Kg} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}{157.9 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}=9.14 \times 10^{101} \mathrm{~mol}$
8] How many atoms of Zn would contain the same number of grams as $7.54 \times 10^{-6} \mathrm{mg}$ of Cu ?
$7.54 \times 10^{-6} \mathrm{mg} \mathrm{Cu} \times \frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}=7.54 \times 10^{-9} \mathrm{~g} \mathrm{Cu}$
$7.54 \times 10^{-9} \mathrm{~g} \mathrm{Zn} \times \frac{1 \mathrm{~mol} \mathrm{Zn}}{65.4 \mathrm{~g} \mathrm{Zn}} \times \frac{6.02 \times 10^{23} \mathrm{Zn} \text { atoms }}{1 \mathrm{~mol} \mathrm{Zn}}=6.94 \times 10^{13} \mathrm{Zn}$ atoms
9] What is the total number of atoms in 8.00 mole aluminum dichromate?
$8.00 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3} \times \frac{6.02 \times 10^{23} \text { formula units } \mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}} \times \frac{29 \text { atoms }}{1 \text { formula unit }}=$
1.40×10^{26} total atoms
10] A typical aspirin tablet contains 5.0 grains of acetyl salicylic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many moles of acetyl salicylic acid are in a single tablet?($0.0648 \mathrm{~g}=1.00$ grain)
5.0 grain $\times \frac{0.0648 \mathrm{~g}}{1.00 \text { grain }} \times \frac{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{180.2 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}=1.5 \times 10^{-3} \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$

11] 4.159 g of a iron and sulfur containing compound is decomposed to give 2.233 g of iron What is the empirical formula?

Fe $\quad 2.233 \mathrm{~g} \div 55.8 \mathrm{~g} / \mathrm{mol} \quad=0.0400 \mathrm{~mol} \mathrm{Fe}$

S (4.159-2.233g) $\div 32.1 \mathrm{~g} / \mathrm{mol}$
$=0.0600 \mathrm{~mol} \mathrm{~S}$

$$
\text { Fe } \frac{.04}{.04} \mathrm{~S} \frac{.06}{.04}
$$

$=\mathrm{Fe}_{1} \mathrm{~S}_{1.5} \quad \mathrm{x} 2$
$\Rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}$
12] The percent composition of a compound is $20.0 \% \mathrm{C}, 2.2 \% \mathrm{H}$, and $77.8 \% \mathrm{Cl}$. The molar mass of the compound is $182.0 \mathrm{~g} / \mathrm{mol}$
a. Find the empirical formula

C $\quad 20.0 \mathrm{~g} \div 12.0 \mathrm{~g} / \mathrm{mol} \quad=1.67 \mathrm{~mol} \mathrm{C}$
H
$2.2 \mathrm{~g} \div \mathbf{1 . 0} \mathbf{g} / \mathrm{mol} \quad=\mathbf{2} \mathbf{2} \mathbf{~ m o l ~ H}$
C $\frac{1.67}{1.67}$ H $\underset{1.67}{2.2} \mathrm{Cl} \frac{2.19}{1.67}$
$=\mathrm{C}_{1} \mathrm{H}_{1.32} \mathrm{Cl}_{1.32} \times 3$
$=>\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{4}$
b. Find the molecular formula
$3 \mathrm{C}=3 \times 12.0 \mathrm{~g} / \mathrm{mol}$
$4 \mathrm{H}=4 \mathrm{x} \quad 1.0 \mathrm{~g} / \mathrm{mol}$
$\underline{4 \mathrm{Cl}=4 x 35.5 \mathrm{~g} / \mathrm{mol}}$
$182.0 \mathrm{~g} / \mathrm{mol} \quad \frac{182 \mathrm{~g}}{182 \mathrm{~g}}=1=>$
$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{4}$

