Equation Stoichiometry Chemistry 110

1] Given the equation: $2C_8H_{18} + 25O_2 ----> 16CO_2 + 18H_2O$

a. How many moles of oxygen gas are required to make 8.33 moles of carbon dioxide?
8.33 moles CO₂ X ^{25mol O₂}/_{16mol CO₂} = 13.0 moles O₂

Answer _____

b. How many moles of C₈H₁₈ must be used to produce 1.99 grams of water

1.99 mg H₂O X $\frac{1 \text{mol H}_2\text{O}}{18.0\text{g}}$ X $\frac{2 \text{mol C}_8\text{H}_{18}}{18 \text{mol H}_2\text{O}}$ = 1.23 x 10⁻² mol C₈H₁₈

Answer _

c. If the reaction produces 5.3 mg of carbon dioxide how many grams of water are produced?

5.3mg CO₂ X $\frac{10^{-3}g}{1mg}$ X $\frac{1mol CO_2}{44.0g CO_2}$ X $\frac{18mol H_2O}{16mol CO_2}$ X $\frac{18.0g H_2O}{1mol H_2O}$ =

Answer _____

d. How many grams of oxygen are needed to react with 7.22 x 10 24 molecules of C₈H₁₈?

7.22 x 10²⁴molec. C₈H₁₈ X
$$\frac{1 \text{mol } C_8 \text{H}_{18}}{6.02 \text{x} 10^{23} \text{molec}}$$
 X $\frac{25 \text{mol } O_2}{2 \text{mol } C_8 \text{H}_{18}}$ X $\frac{32.0 \text{g } O_2}{1 \text{mol } O_2}$ =

4.80 x 10³g O₂

Answer ____

2] How many grams of aluminum oxide are formed when 25.0 grams of Aluminum are reacted with oxygen gas? a. Write the balanced equation

b. Calculate the number of grams of aluminum oxide produced

25.0g AI X
$$\frac{1 \text{mol AI}}{27.0g \text{AI}}$$
 X $\frac{1 \text{mol AI}_2\text{O}_3}{2 \text{mol AI}}$ X $\frac{102.0g \text{AI}_2\text{O}_3}{1 \text{mol AI}_2\text{O}_3}$ = 47.2g AI₂O₃

Answer _____

3] A sample of TiCl₄ is reacted with Titanium metal to produce Titanium (III) chloride

a. Write the balanced equation

b. How many kg of Titanium (III) chloride was produced from 52 kg of Titanium (IV) chloride?

52 Kg TiCl₄ X
$$\frac{10^3 \text{g}}{1\text{Kg}}$$
 X $\frac{1\text{mol TiCl}_4}{189.9\text{g TiCl}_4}$ X $\frac{4\text{mol TiCl}_3}{3\text{mol TiCl}_4}$ X $\frac{154.4\text{g TiCl}_3}{1\text{mol TiCl}_3}$ X $\frac{10^{-3}\text{Kg}}{1\text{g}}$ =

56.4 Kg TiCl₃

Answer _____

a. How many grams of water are needed to react with 100.0 moles of Al₄C₃?

100.0mol Al₄C₃ X
$$\frac{12 \text{mol H}_2\text{O}}{1 \text{mol Al}_4\text{C}_3}$$
 X $\frac{18.01 \text{g H}_2\text{O}}{1 \text{mol H}_2\text{O}}$ = 2.160 x 10⁴ g H₂O

Answer ___

b. How many moles of Al_4C_3 were reacted when 3.55 x 10 35 formulas units of aluminum hydroxide were produced?

3.55 x 10³⁵ formula units Al(OH)₃ X $\frac{1 \text{mol Al(OH)}_3}{6.02 \text{ x } 10^{23} \text{ form. units}}$ X $\frac{1 \text{mol Al}_4\text{C}_3}{4 \text{mol Al(OH)}_3}$ =

1.47 x 10¹¹mol Al(OH)₃

Answer ____

c. How many grams of aluminum hydroxide were produced when 673 mg of CH₄ were formed.?

 $673 \text{ mg CH}_4 \times \frac{10^{-3}\text{g}}{1\text{mg}} \times \frac{1\text{mol CH}_4}{16.0\text{g CH}_4} \times \frac{4\text{mol Al}(\text{OH})_3}{3\text{mol CH}_4} \times \frac{78.0\text{g Al}(\text{OH})_3}{1\text{mol Al}(\text{OH})_3} =$

4.37g Al(OH)₃

Answer _____

5] Given the reaction:

 $4C + Na_2CO_3 + N_2 ---> 2 NaCN + 3 CO$

181 grams of sodium carbonate were added to an excess of carbon and nitrogen. After the reaction finished, 35 g of of **unreacted sodium carbonate remained**.

a. How many moles of carbon monoxide were produced?

181g total Na₂CO₃ - 35g unreacted Na₂CO₃ = 146 g Na₂CO₃ reacted

 $146g \text{ Na}_2\text{CO}_3 \text{ X} \frac{1 \text{mol Na}_2\text{CO}_3}{106.0g \text{ Na}_2\text{CO}_3} \text{ X} \frac{3 \text{mol CO}}{1 \text{mol Na}_2\text{CO}_3} = 4.13 \text{ mol CO}$

b. How many grams of nitrogen gas reacted with the sodium carbonate?

 $146g \text{ Na}_2\text{CO}_3 \text{ X} \frac{1\text{mol Na}_2\text{CO}_3}{106.0g} \text{ X} \frac{1\text{mol N}_2}{1\text{mol Na}_2\text{CO}_3} \text{ X} \frac{28.0g \text{ N}_2}{1\text{mol N}_2} = 38.6 \text{ g N}_2$

Answer

Answer _____