Equation Stoichiometry

Chemistry 110

1] Given the equation: $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}--->16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
a. How many moles of oxygen gas are required to make 8.33 moles of carbon dioxide?
8.33 moles $\mathrm{CO}_{2} \times \frac{25 \mathrm{~mol} \mathrm{O}_{2}}{16 \mathrm{~mol} \mathrm{CO}_{2}}=13.0$ moles O_{2}

Answer \qquad
b. How many moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ must be used to produce 1.99 grams of water
$1.99 \mathrm{mg} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{18 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.23 \times 10^{-2} \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}$

Answer \qquad
c. If the reaction produces 5.3 mg of carbon dioxide how many grams of water are produced?
$5.3 \mathrm{mg} \mathrm{CO}_{2} \times \frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.0 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{18 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{16 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=$
$2.4 \times 10^{-3} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Answer \qquad
d. How many grams of oxygen are needed to react with $7.22 \times 10{ }^{24}$ molecules of $\mathrm{C}_{8} \mathrm{H}_{18}$?
7.22×10^{24} molec. $\mathrm{C}_{8} \mathrm{H}_{18} \times \frac{1 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}{6.02 \times 10^{23} \mathrm{molec}} \times \frac{25 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}} \times \frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=$
$4.80 \times 10^{3} \mathrm{~g} \mathrm{O}_{2}$
Answer
2] How many grams of aluminum oxide are formed when 25.0 grams of Aluminum are reacted with oxygen gas?
a. Write the balanced equation

$$
4 \mathrm{Al}+3 \mathrm{O}_{2}-->2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

b. Calculate the number of grams of aluminum oxide produced
$25.0 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g} \mathrm{Al}} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{2 \mathrm{~mol} \mathrm{Al}} \times \frac{102.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}=47.2 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
Answer \qquad
3] A sample of TiCl_{4} is reacted with Titanium metal to produce Titanium (III) chloride
a. Write the balanced equation

$$
3 \mathrm{TiCl}_{4}+\mathrm{Ti}-->4 \mathrm{TiCl}_{3}
$$

b. How many kg of Titanium (III) chloride was produced from 52 kg of Titanium (IV) chloride?
$52 \mathrm{Kg} \mathrm{TiCl}_{4} \times \frac{10^{3} \mathrm{~g}}{1 \mathrm{Kg}} \times \frac{1 \mathrm{~mol} \mathrm{TiCl}_{4}}{189.9 \mathrm{~g} \mathrm{TiCl}_{4}} \times \frac{4 \mathrm{~mol} \mathrm{TiCl}_{3}}{3 \mathrm{~mol} \mathrm{TiCl}_{4}} \times \frac{154.4 \mathrm{~g} \mathrm{TiCl}_{3}}{1 \mathrm{~mol} \mathrm{TiCl}_{3}} \times \frac{10^{-3} \mathrm{Kg}}{1 \mathrm{~g}}=$
56.4 Kg TiCl 3

Answer \qquad

4] Given the equation: $\quad \mathrm{Al}_{4} \mathrm{C}_{3}+12 \mathrm{H}_{2} \mathrm{O}-->4 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$
a. How many grams of water are needed to react with 100.0 moles of $\mathrm{Al}_{4} \mathrm{C}_{3}$?
$100.0 \mathrm{~mol} \mathrm{Al}_{4} \mathrm{C}_{3} \times \frac{12 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Al}_{4} \mathrm{C}_{3}} \times \frac{18.01 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=2.160 \times 10^{4} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Answer \qquad
b. How many moles of $\mathrm{Al}_{4} \mathrm{C}_{3}$ were reacted when $3.55 \times 10{ }^{35}$ formulas units of aluminum hydroxide were produced?
3.55×10^{35} formula units $\mathrm{Al}(\mathrm{OH})_{3} \times \frac{1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}{6.02 \times 10^{23} \text { form. units }} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{4} \mathrm{C}_{3}}{4 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}=$

$$
1.47 \times 10^{11} \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}
$$

Answer \qquad
c. How many grams of aluminum hydroxide were produced when 673 mg of CH_{4} were formed.?
$673 \mathrm{mg} \mathrm{CH}_{4} \times \frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.0 \mathrm{~g} \mathrm{CH}_{4}} \times \frac{4{\mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}_{3 \mathrm{~mol} \mathrm{CH}_{4}} \times \frac{78.0 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}}{1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}=}{=}$

$4.37 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$

Answer \qquad
5] Given the reaction:

$$
4 \mathrm{C}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{N}_{2}-->2 \mathrm{NaCN}+3 \mathrm{CO}
$$

181 grams of sodium carbonate were added to an excess of carbon and nitrogen. After the reaction finished, 35 g of of unreacted sodium carbonate remained.
a. How many moles of carbon monoxide were produced?

181 g total $\mathrm{Na}_{2} \mathrm{CO}_{3}-35 \mathrm{~g}$ unreacted $\mathrm{Na}_{2} \mathrm{CO}_{3}=146 \mathrm{~g} \mathrm{Na} \mathrm{CO}_{3}$ reacted
$146 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{106.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=4.13 \mathrm{~mol} \mathrm{CO}$
b. How many grams of nitrogen gas reacted with the sodium carbonate?

Answer \qquad
$146 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{106.0 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{28.0 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=38.6 \mathrm{~g} \mathrm{~N}_{2}$

Answer \qquad

