Gases
 Chemistry 110

1] 76.3 mL of carbon dioxide is at $31^{\circ} \mathrm{C}$ and 755 mm Hg . What would the final volume be in ml at 2.73 atm? Assume that the temperature remains constant.

$$
\begin{aligned}
& 2.73 \mathrm{~atm} \times \frac{760 \mathrm{~mm}}{1 \mathrm{~atm}}=2.07 \times 10^{3} \mathrm{~mm} \\
& \mathrm{v}_{2}=\frac{(755 \mathrm{~mm}) \times(76.3 \mathrm{ml})}{\left(2.07 \times 10^{3} \mathrm{~mm}\right)}=27.8 \mathrm{ml}
\end{aligned}
$$

Answer \qquad
2] 9.00 L of nitrogen gas is at $-74^{\circ} \mathrm{C}$. At what temperature will the volume be 5601 ml ? (Assume constant pressure)

$$
\begin{aligned}
& \mathrm{K}=273+(-74)=199 \mathrm{~K} \\
& \mathrm{~T}_{2}=\frac{(199 \mathrm{~K}) \times(5.601 \mathrm{~L})}{9.00 \mathrm{~L}}=124 \mathrm{~K} \text { or }-149^{\circ} \mathrm{C}
\end{aligned}
$$

Answer \qquad
3] A gas occupies a volume of 14 L at 455 mm Hg pressure $25^{\circ} \mathrm{C}$. What will be its new volume if the pressure is increased by 50% and the temperature remains constant?

$$
V_{2}=\frac{(455 \mathrm{~mm}) \times(14 \mathrm{~L})}{1.5(455 \mathrm{~mm})}=9.3 \mathrm{~L}
$$

Answer \qquad
4] A sample of a gas is in a 17.2 L container is at a pressure of 0.33 atm and $34.3^{\circ} \mathrm{C}$. What is its new pressure if the Kelvin temperature was cut in half with the volume remaining constant?]

$$
\begin{aligned}
& \mathrm{K}=34.3+273=307.3 \mathrm{~K} \\
& \mathrm{P}_{2}=\frac{(0.33 \mathrm{~atm}) \times(307.3 \mathrm{~K}) .50}{307.3 \mathrm{~K}}=0.17 \mathrm{~atm}
\end{aligned}
$$

Answer \qquad
5] A 250.0 L cylinder contains 78.0 g of nitrogen at $100 .{ }^{\circ} \mathrm{C}$. How many grams of nitrogen must be removed to decrease the pressure by 20.0 mm Hg ?

$$
\begin{aligned}
& P_{\text {initial }}=\frac{\left(78.0 \mathrm{~g} / 28 \frac{\mathrm{~g}}{\mathrm{~mole}}\right) \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(373 \mathrm{~K})}{250.0 \mathrm{~L}}=0.3411 \mathrm{~atm} \\
& 20.0 \mathrm{~mm} \times \frac{1 \mathrm{~atm}}{760 \mathrm{~mm}}=0.0263 \mathrm{~atm} \\
& P_{\text {final }}=0.341 \mathrm{~atm}-0.0263 \mathrm{~atm}=0.315 \mathrm{~atm} \\
& \text { grams } \\
& \text { final }=\frac{\left(28.0 \frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times(0.315 \mathrm{~atm}) \times(250.0 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(373 \mathrm{~K})}=72.0 \mathrm{~g}
\end{aligned}
$$

$$
\text { grams }_{\text {removed }}=78.0 \mathrm{~g}-72.0 \mathrm{~g}=6.0 \mathrm{~g} \text { Answer }
$$

\qquad
6] . A gas mixture contains oxygen, argon and nitrogen. The oxygen has a partial pressure of 99 mm Hg , nitrogen gas at 0.330 atm , and the total pressure is of 675 mm Hg . If all the oxygen is removed from the mixture, what will be the total pressure?

$$
P=675 \mathrm{~mm} \mathrm{Hg}-99 \mathrm{~mm} \mathrm{Hg}=576 \mathrm{~mm}
$$

Answer \qquad
7] A sample of oxygen is collected over water at $20^{\circ} \mathrm{C}$ and 1.00 atm . What is the partial pressure of the oxygen in atm? (at $20^{\circ} \mathrm{C}$, pure water has a vapor pressure of 17.5 torr)

$$
\mathrm{Po}_{2}=1.00 \mathrm{~atm}-\frac{17.5 \text { torr }}{760 \text { torr } / 1 \mathrm{~atm}}=0.977 \mathrm{~atm} \text { or } 742 \mathrm{torr}
$$

\qquad
8]. Given a 9.0 L sample of gas at STP, what would be the new volume if the pressure was triple the original pressure?

$$
\mathrm{V}_{2}=\frac{(1 \mathrm{~atm}) \times(9.0 \mathrm{~L})}{3 \mathrm{~atm}}=3 \mathrm{~atm}
$$

Answer \qquad
9] What is the molar mass of a gas if its density is $2.95 \times 10^{-3} \mathrm{~g} / \mathrm{ml}$ at STP?
$2.95 \times 10^{-3} \mathrm{~g} / \mathrm{ml} \times \frac{1 \mathrm{ml}}{10^{-3}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=66.1 \mathrm{~g} / \mathrm{mol}$
Answer \qquad
10] Calculate the number of grams of 32 L of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, at $-12.5^{\circ} \mathrm{C}$ and 695 mm Hg pressure.

$$
\begin{aligned}
& \mathrm{P}=695 \mathrm{~mm} \times \frac{1 \mathrm{~atm}}{760 \mathrm{~mm}}=0.914 \mathrm{~atm} \\
& \mathrm{n}_{\mathrm{C}_{2} \mathrm{H}_{6}}=\frac{(0.914 \mathrm{~atm}) \times(32 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(273-12.5) \mathrm{K}}=1.37 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \\
& \text { grams } \mathrm{C}_{2} \mathrm{H}_{6}=1.37 \mathrm{~mol} \times \frac{30.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}}{1 \mathrm{~mol}}=41.1 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}
\end{aligned}
$$

Answer \qquad
11] 5.5 mol of a gas occupies 44 mls at $19^{\circ} \mathrm{C}$. What is the pressure of the system?

$$
P=\frac{(5.5 \mathrm{~mol}) \times(273+19) \mathrm{K} \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right)}{0.044 \mathrm{~L}}=3.0 \times 10^{3} \mathrm{~atm}
$$

Answer \qquad
12] What volume will a mixture of 6.00 moles of argon gas and 5.00 moles of nitrogen gas occupy at $45^{\circ} \mathrm{C}$ and 0.798 atm?

$$
V=\frac{(11.00 \mathrm{~mol} \text { gas }) \times(273+45) \mathrm{K} \times\left(0.0821 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}\right)}{0.798 \mathrm{~atm}}=3.60 \times 10^{2} \mathrm{~L}
$$

Answer \qquad
13] What is the density of chlorine gas at 1.0 atm and $0^{\circ} \mathrm{C}$?

$$
\text { Density }_{\mathrm{Cl}_{2}}=\frac{70.1 \mathrm{~g} \mathrm{Cl}_{2}}{\mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}}=3.13 \mathrm{~g} / \mathrm{L}
$$

Answer \qquad
14] What is the molar mass of a gas if 1.15 g occupies 0.125 L at 1.62 atm and $31^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{gas}}=\frac{(1.62 \mathrm{~atm}) \times(0.125 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{L-atm}}{\mathrm{~mol}-\mathrm{K}}\right) \times(273+31) \mathrm{K}}=8.11 \times 10^{-3} \mathrm{~mol} \text { gas } \\
& \mathrm{MM}_{\text {gas }}=\frac{1.15 \mathrm{~g}}{8.11 \times 10^{-3} \mathrm{~mol}}=142 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

\qquad

