Solution Stoichiometry

CHEMISTRY 110

Name

1] How many grams of calcium phosphate can be produced from the reaction of 2.50 L of 0.250 M Calcium chloride with and excess of phosphoric acid?
Calcium chloride + phosphoric acid --> calcium phosphate + hydrochloric acid
$3 \mathrm{CaCl}_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4}-->\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{HCl}$

Answer \qquad $64.6 \mathrm{~g} \mathrm{Ca} 3\left(\mathrm{PO}_{4}\right)_{2}$
2] How many milliliters of 1.50 M Nitric acid is required to react with 100.0 g of cuprous oxide

$$
14 \mathrm{HNO}_{3}+3 \mathrm{Cu}_{2} \mathrm{O}--->6 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+7 \mathrm{H}_{2} \mathrm{O}
$$

Answer \qquad
3] 60.5 mL of HNO_{3} are required to react with 25.0 mL of a 1.00 M Barium hydroxide solution:

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \text { (BALANCED) }
$$

Find the Molarity of the nitric acid solution

$$
25.0 \mathrm{ml} \mathrm{Ba}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{ml}} \times . \frac{1.00 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}=0.0500 \mathrm{~mol} \mathrm{HNO}_{3}
$$

$$
\mathrm{M}_{\mathrm{HNO}_{3}}=\frac{0.0500 \mathrm{~mol} \mathrm{HNO}_{3}}{0.0605 \mathrm{~L} \mathrm{soln}}=0.826 \mathrm{M}
$$

4] For the following equation determine which reactant is the limiting reactant and which reactant is in excess. The amounts of reagent used are shown. Show calculations to support your choices

$$
\begin{aligned}
& 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \\
& 40.0 \mathrm{~g} \\
& 46.0 \mathrm{~g}
\end{aligned}
$$

$40.0 \mathrm{~g} \mathrm{Fe} \times \frac{1 \mathrm{molFe}}{55.8 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}}{3 \mathrm{molFe}}=0.239 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}$
$16.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{molH}_{2} \mathrm{O}}{18.0 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.222 \mathrm{~mol} \mathrm{Fe}_{3} \mathrm{O}_{4} \quad<====$ amount made
The limiting reactant is \qquad $\mathrm{H}_{2} \mathrm{O}$ \qquad The excess reactant is \qquad Fe \qquad
5] 35.5 g of silver nitrite is reacted with 35.5 grams of sodium sulfide which produces silver sulfide and sodium nitrite.
a. Write and balance the equation $\quad \mathbf{2 A g N O} 2+\mathbf{N a}_{2} S \rightarrow A_{2} S+2 \mathbf{N a N O}_{2}$
b.. Calculate the number of grams of silver sulfide produced.
$35.5 \mathrm{~g} \mathrm{AgNO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{AgNO}_{2}}{153.9 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}{2 \mathrm{~mol} \mathrm{AgNO}_{2}}=0.115 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}<====$ amount made
$35.5 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S} \times . \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}{78.0 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}=0.455 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}$
$0.115 \mathrm{~mol} \mathrm{~mol} \mathrm{Ag} 2 \mathrm{~S} \times \frac{247.8 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}}{1 \mathrm{~mol}}=28.5 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}$
Answer \qquad
c. How many grams of silver nitrite will remain at the end of the reaction?

Answer \qquad 0 g \qquad The AgNO_{2} is the limiting reactant
d. How many grams of sodium sulfide will remain at the end of the reaction?
$0.115 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}} \times \frac{78.0 \mathrm{~g} \mathrm{Na}}{2} \mathrm{~S}\left(1 \mathrm{~mol} \quad=8.97 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~S}\right.$ used

Excess $\mathrm{Na}_{2} \mathrm{~S}=35.5 \mathrm{~g}-\mathbf{8 . 9 7} \mathrm{g}=\mathbf{2 6 . 5 g} \mathrm{Na}_{2} \mathrm{~S}$
Answer \qquad
6] Calculate the grams of silver chloride produced from 10.00 ml of 10.0 M magnesium chloride with 100.0 ml of 2.20 M silver nitrate

$$
2 \mathrm{AgNO}_{3}+\mathrm{MgCl}_{2}-->\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+2 \mathrm{AgCl}(\mathrm{aq})
$$

$0.01000 \mathrm{~L} \mathrm{MgCl}_{2} \times \frac{10.0 \mathrm{~mol} \mathrm{MgCl}_{2}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=0.200 \mathrm{~mol} \mathrm{AgCl}<====$ amount made
$0.1000 \mathrm{~L} \mathrm{AgNO}_{3} \times \frac{2.20 \mathrm{molAgNO}_{3}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{AgCl}}{2 \mathrm{~mol} \mathrm{AgNO}}=0.220 \mathrm{~mol} \mathrm{AgCl}$
$0.200 \mathrm{~mol} \mathrm{AgCl} \mathrm{X} \frac{143.3 \mathrm{~g} \mathrm{AgCl}}{1 \mathrm{~mol}}=28.7 \mathrm{~g} \mathrm{AgCl}$
Answer \qquad
7] Aluminum reacts with oxygen to form aluminum oxide: 4AI $+3 \mathrm{O}_{2}--->2 \mathrm{Al}_{2} \mathrm{O}_{3}$ (balanced)
If 75.0 g of Al and 200.0 g of oxygen are reacted, and 75.0 g of aluminum oxide is produced, what is the percent yield for the reaction?
$75.0 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{4 \mathrm{~mol} \mathrm{AI}}=1.39 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}<====$ amount made
$200.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.0 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}}=4.17 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
$1.39 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3} \times \frac{102.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol}}=141.8 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
$\%$ Yield $=\frac{75.0 \mathrm{~g}}{141.8 \mathrm{~g}}(100)=52.9 \%$
Answer \qquad
8]. According to the following reaction:..... $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})--->+2 \mathrm{CuO}(\mathrm{s})$
a. If the percentage yield is 96.7% how many grams of CuO will be produced from 13.4 g of Cu ?

$13.4 \mathrm{~g} \mathrm{Cu} \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{63.5 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{CuO}}{2 \mathrm{~mol} \mathrm{Cu}} \times \frac{79.5 \mathrm{gCuO}}{1 \mathrm{~mol}} \times \frac{96.7 \mathrm{~g} \text { Actual }}{100 \mathrm{~g} \text { Theo. }}=16.2 \mathrm{~g} \mathrm{CuO}$

Answer \qquad
b..How many grams of Cu must you use to produce $5.00 \times 10^{13} \mathrm{mg} \mathrm{CuO} ?$
$5.00 \times 10^{13} \mathrm{mg} \mathrm{CuO} \times \frac{10^{-3}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{CuO}}{79.5 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{Cu}}{2 \mathrm{~mol} \mathrm{CuO}} \times \frac{63.5 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol}} \times \frac{100 \mathrm{~g}}{96.7 \mathrm{~g}}=4.13 \times 10^{10} \mathrm{~g}$
Answer \qquad

