AQUEOUS ACID-BASE SUMMARY

PURE WATER

Ionization reaction:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad \text { simplified: } \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

\mathbf{H}^{+}loves $\mathbf{O H}^{-}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7}$

Only 1 in 500,000 molecules ionized
and $\quad\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$

AQUEOUS SOLUTI ONS OF ACI DS $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$

Acids are MOLECULAR COMPOUNDS that react with water to produce ions.
Ionization reaction of acids:
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$simplified: $\mathrm{HA} \longrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$
STRONG ACIDS ($\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$)
Every molecule in solution reacts with water to produce ions. Solution is acidic because of $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{H}^{+}\right)$.
$\mathrm{HCl}($ aq $)+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$simplified: $\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
In solution, \mathbf{H}^{+}hates $\mathbf{C l}^{-} \quad \underline{M} S A \longrightarrow$ theoretical $\left[\mathrm{H}^{+}\right]$
WEAK ACI DS (all other acids)
FEW molecules in solution react with water to produce ions. Solution has very few $\mathrm{H}_{3} \mathrm{O}^{+}\left(\mathrm{H}^{+}\right)$.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}($ aq $)+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$simplified: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \longrightarrow \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
In solution, \mathbf{H}^{+}likes $\mathbf{C}_{2} \mathbf{H}_{\mathbf{3}} \mathbf{O}_{\mathbf{2}}{ }^{-} \quad \underline{M} W A \longrightarrow \longrightarrow$ theoretical $\left[\mathrm{H}^{+}\right]$

AQUEOUS SOLUTI ONS OF BASES $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$

STRONG BASES - SOLUBLE METAL HYDROXIDES (Group IA hydroxides \& $\left.\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}\right)$ Strong bases are IONIC COMPOUNDS that dissociate into ions upon dissolving in water. Solution is basic because of OH^{-}.
$\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
In solution, $\mathbf{N a}^{+}$hates $\mathbf{O H}^{-}$
M SB \longrightarrow theoretical $\left[\mathrm{OH}^{-}\right]$
WEAK BASES $\left(\mathrm{NH}_{3}\right)$
Weak bases are MOLECULAR COMPOUNDS that react with water to produce ions.
IONIZATION REACTION OF NH3:
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$simplified: $\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
FEW molecules in solution react with water to produce ions. Solution has very few OH^{-}.

In solution, $\mathbf{N H}_{\mathbf{4}}{ }^{+}$likes $\mathbf{O H}^{-}$
M WB \longrightarrow theoretical $\left[\mathrm{OH}^{-}\right]$

