1. What is the molarity of a solution that was prepared by dissolving 14.2 g of NaNO_{3} (molar mass $=85.0 \mathrm{~g} / \mathrm{mol}$) in enough water to make 350 mL of solution?

$\frac{14.2 \mathrm{~g} \mathrm{NaNO}_{3}}{0.350 \mathrm{~L} \mathrm{soln}}\left(\frac{1 \mathrm{~mol} \mathrm{NaNO}_{3}}{85 \mathrm{gNaNO}_{3}}\right) \equiv$

Ans: 0.477 M
2. What is the molarity of a solution that was prepared by dissolving 82.0 g of CaCl_{2} $($ molar mass $=111.1 \mathrm{~g} / \mathrm{mol})$ in enough water to make 812 mL of solution?

Ans: 0.909 M
3. What is the molarity of a solution that contains 5.5 g of HCl (molar mass $=36.5 \mathrm{~g} / \mathrm{mol}$) dissolved in enough water to make 250 mL of solution?

Ans: 0.60 M
4. How many grams of NaBr (molar mass $=102.9 \mathrm{~g} / \mathrm{mol}$) would be needed to prepare 700 ml of 0.230 M NaBr solution?
0.700 L soln $\left(\frac{0.230 \mathrm{~mol} \mathrm{NaNO}_{3}}{1 \mathrm{~L} \mathrm{soln}}\right)\left(\frac{102.9 \mathrm{gNaNO}_{3}}{1 \mathrm{~mol} \mathrm{NaNO}_{3}}\right) \equiv$

