| Chemistry | 112 | |-----------|-----| |-----------|-----| | 3. T | | | |------|--|--| | Name | | | Practice Exam 3 Show all work and set ups in an organized way. See last page for constants. 1) A particular complex ion absorbs light at a wavelength of 520 nm. What is the frequency of this light? What is the energy in joules? What color of light is observed? Is the ligand most likely a weak field ligand or strong field ligand? | Answer: Energy_ | | Observed Color | | |-----------------|----------------|----------------|--| | Frequency | Type of Ligand | | | 2) Complete and balance the following equation and use the appropriate values of Ksp and Kf to find the equilibrium constant for the following reaction: FeS(s)+ __CN $^-$ (aq) \rightleftharpoons Answer____ | 3.) Find the solubility of CuI in $0.67M$ HCN solution. The Ksp of CuI is 1.1×10^{-12} . Show balanced equation. | |---| | | | | | | | | | | | | | Answer | | 4. For the following complex ion draw the valence bond theory diagram and the crystal field theory diagram. Label the diagrams as shown in lecture. Label all orbitals. | | $[\mathbf{Z}\mathbf{n}\mathbf{C}\mathbf{l}_{2}\mathbf{F}_{2}]^{-2}$ | | a. Valence bond diagram: | | | | | | | | | | | | | | b. Crystal Field diagram | | | | | | c. | Is the species high spin or low spin | | |----|--|--| | d. | Is the species paramagnetic or | | | | diamagnetic | | | e. | State the hybridization | | | f. | State the shape | | | g. | Which is greater crystal field | | | | splitting energy or pairing energy? | | | h. | Is(are) the ligand(s) weak field or strong field | | | i. | Coordination number | | | j. | Name the species | | Draw all of the isomers of [ZnBrClFH₂O]⁻². Label the isomers as cis/trans, fac/mer etc. where appropriate. | a. Valence bond diagram: | in lecture. La | | |--|----------------|--| b. Crystal Field diagram | 1 6 1 | | | | . Is the species paramagnetic or diamagnetic | | | | | | | | Is the species paramagnetic or diamagnetic State the hybridization | | | | . Is the species paramagnetic or diamagnetic | | | | Is the species paramagnetic or diamagneticState the hybridizationState the shapeWhich is greater crystal field splitting | | | | Is the species paramagnetic or diamagnetic State the hybridization State the shape Which is greater crystal field splitting energy or pairing energy? | | | | State the hybridization State the shape Which is greater crystal field splitting energy or pairing energy? | | | | Is the species paramagnetic or diamagnetic State the hybridization State the shape Which is greater crystal field splitting energy or pairing energy? | | | 5. For the following complex ion draw the valence bond theory diagram and the crystal field | 6. For the following complex ion draw the valence bond theory diagram and the crystal fie theory diagram. Label the diagrams as shown in lecture. Label all orbitals. | ld | |---|----| | $[Cr(H_2O)_2Cl_2F_2]^{1-}$ | | | a. Valence bond diagram: | | | b. Crystal Field diagram c. Is the species high spin or low spin | | | d. Is the species paramagnetic or diamagnetic | | | e. State the hybridization | | | f. State the shape | | | g. Which is greater crystal field splitting energy or pairing energy? h. Is(are) the ligand(s) weak field or | | | strong field | | Coordination number j. Name the species | | For the following complex ion draw the valence bond theory diagram and the cory diagram. Label the diagrams as shown in lecture. Label all orbitals. | crystal field | |------------|--|---------------| | [Cu(| $u(en)_2(CN)_2$ | | | a. Va | Valence bond diagram: | | | b. Cı | Crystal Field diagram | | | c. | | | | d. | I. Is the species paramagnetic or diamagnetic | | | e. | ~ | | | f. | State the shape | | | g. | | | | h. | splitting energy or pairing energy? n. Is(are) the ligand(s) weak field or | | | 11. | strong field | | | i. | | | | <u>j</u> . | . Name the species | | | 8. Draw two linkage isomers of | |--| | $Al[Co(CN)_2(C_2O_4)_2]$ | Name the compound $Al[Co(CN)_2(C_2O_4)_2]$ | | What type of bond exists between the aluminum and the complex ion? | | | | 9. Draw two enantiomers of | | $Al[Co(CN)_2(C_2O_4)_2]$ | | | 11. [Cr(H2O)6]2+ is violet. Another chromium complex is green. Would that compound most likely be $[Cr(CN)_6]^4-$ or $[Cr(Cl)_6]^4-$ Draw and label the CF diagrams and give a brief explanation for you claim. ## TEAR THIS SHEET OFF ## THIS IS YOUR REFERENCE SHEET | Color | Wavelength | |--------|------------| | Violet | 400-430 | | blue | 430-480 | | green | 480-560 | | yellow | 560-590 | | orange | 590-630 | | red | 630-750 | Plank's Constant = $6.626 \times 10^{-34} \text{ J (sec)}$ | K formation for | r complex ions | |-----------------------|----------------------| | Complex Ion | К _f . | | $Ag(CN)_{2}$ | 3.0×10^{20} | | $AgCl_2$ - | 1.0×10^{-5} | | $Fe(CN)_6^{4-}$ | 3.0×10^{35} | | $Fe(CN)_{6^{3-}}$ | 4.0×10^{43} | | $Hg(CN)_4^{2-}$ | 9.3×10^{38} | | $Zn(CN)_4^{2-}$ | 4.2×10^{19} | | AlF_6^{3-} | 4×10^{19} | | $Cd(NH_3)_{4^{2+}}$ | 1.3×10^7 | | $Cd(CN)_{4^{2-}}$ | 7.7×10^{16} | | CdI_4^{2-} | 1×10^{6} | | $Ag(NH_3)_2^+$ | 1.7×10^7 | | $Cu(NH_3)_4^{2+}$ | 5.6×10^{11} | | $Zn(NH_3)_4^{2+}$ | 7.8×10^8 | | $Al(OH)_4$ | 3×10^{33} | | $Be(OH)_{4^{2-}}$ | 4×10^{18} | | $Co(OH)_{4^{2-}}$ | 5×10^9 | | $Ni(OH)_{4^{2-}}$ | 2×10^{28} | | Pb(OH) ₃ - | 8×10^{13} | | $Sn(OH)_3$ | 3×10^{25} | | $Zn(OH)_{4^{2-}}$ | 3×10^{15} | | $Ag(S_2O_3)_2^{3-}$ | 4.7×10^{13} | | | | | | | | | |