Chemistry	112
-----------	-----

3. T		
Name		

Practice

Exam 3

Show all work and set ups in an organized way. See last page for constants.

1) A particular complex ion absorbs light at a wavelength of 520 nm. What is the frequency of this light? What is the energy in joules? What color of light is observed? Is the ligand most likely a weak field ligand or strong field ligand?

Answer: Energy_		Observed Color	
Frequency	Type of Ligand		

2) Complete and balance the following equation and use the appropriate values of Ksp and Kf to find the equilibrium constant for the following reaction: FeS(s)+ __CN $^-$ (aq) \rightleftharpoons

Answer____

3.) Find the solubility of CuI in $0.67M$ HCN solution. The Ksp of CuI is 1.1×10^{-12} . Show balanced equation.
Answer
4. For the following complex ion draw the valence bond theory diagram and the crystal field theory diagram. Label the diagrams as shown in lecture. Label all orbitals.
$[\mathbf{Z}\mathbf{n}\mathbf{C}\mathbf{l}_{2}\mathbf{F}_{2}]^{-2}$
a. Valence bond diagram:
b. Crystal Field diagram

c.	Is the species high spin or low spin	
d.	Is the species paramagnetic or	
	diamagnetic	
e.	State the hybridization	
f.	State the shape	
g.	Which is greater crystal field	
	splitting energy or pairing energy?	
h.	Is(are) the ligand(s) weak field or strong field	
i.	Coordination number	
j.	Name the species	

Draw all of the isomers of [ZnBrClFH₂O]⁻². Label the isomers as cis/trans, fac/mer etc. where appropriate.

a. Valence bond diagram:	in lecture. La	
b. Crystal Field diagram		
1 6 1		
. Is the species paramagnetic or diamagnetic		
Is the species paramagnetic or diamagnetic State the hybridization		
. Is the species paramagnetic or diamagnetic		
Is the species paramagnetic or diamagneticState the hybridizationState the shapeWhich is greater crystal field splitting		
 Is the species paramagnetic or diamagnetic State the hybridization State the shape Which is greater crystal field splitting energy or pairing energy? 		
State the hybridization State the shape Which is greater crystal field splitting energy or pairing energy?		
 Is the species paramagnetic or diamagnetic State the hybridization State the shape Which is greater crystal field splitting energy or pairing energy? 		

5. For the following complex ion draw the valence bond theory diagram and the crystal field

6. For the following complex ion draw the valence bond theory diagram and the crystal fie theory diagram. Label the diagrams as shown in lecture. Label all orbitals.	ld
$[Cr(H_2O)_2Cl_2F_2]^{1-}$	
a. Valence bond diagram:	
b. Crystal Field diagram c. Is the species high spin or low spin	
d. Is the species paramagnetic or diamagnetic	
e. State the hybridization	
f. State the shape	
g. Which is greater crystal field splitting energy or pairing energy? h. Is(are) the ligand(s) weak field or	
strong field	

Coordination number

j. Name the species

	For the following complex ion draw the valence bond theory diagram and the cory diagram. Label the diagrams as shown in lecture. Label all orbitals.	crystal field
[Cu($u(en)_2(CN)_2$	
a. Va	Valence bond diagram:	
b. Cı	Crystal Field diagram	
c.		
d.	I. Is the species paramagnetic or diamagnetic	
e.	~	
f.	State the shape	
g.		
h.	splitting energy or pairing energy? n. Is(are) the ligand(s) weak field or	
11.	strong field	
i.		
<u>j</u> .	. Name the species	

8. Draw two linkage isomers of
$Al[Co(CN)_2(C_2O_4)_2]$
Name the compound $Al[Co(CN)_2(C_2O_4)_2]$
What type of bond exists between the aluminum and the complex ion?
9. Draw two enantiomers of
$Al[Co(CN)_2(C_2O_4)_2]$

11. [Cr(H2O)6]2+ is violet. Another chromium complex is green. Would that compound most likely be $[Cr(CN)_6]^4-$ or $[Cr(Cl)_6]^4-$ Draw and label the CF diagrams and give a brief explanation for you claim.

TEAR THIS SHEET OFF

THIS IS YOUR REFERENCE SHEET

Color	Wavelength
Violet	400-430
blue	430-480
green	480-560
yellow	560-590
orange	590-630
red	630-750

Plank's Constant = $6.626 \times 10^{-34} \text{ J (sec)}$

K formation for	r complex ions
Complex Ion	К _f .
$Ag(CN)_{2}$	3.0×10^{20}
$AgCl_2$ -	1.0×10^{-5}
$Fe(CN)_6^{4-}$	3.0×10^{35}
$Fe(CN)_{6^{3-}}$	4.0×10^{43}
$Hg(CN)_4^{2-}$	9.3×10^{38}
$Zn(CN)_4^{2-}$	4.2×10^{19}
AlF_6^{3-}	4×10^{19}
$Cd(NH_3)_{4^{2+}}$	1.3×10^7
$Cd(CN)_{4^{2-}}$	7.7×10^{16}
CdI_4^{2-}	1×10^{6}
$Ag(NH_3)_2^+$	1.7×10^7
$Cu(NH_3)_4^{2+}$	5.6×10^{11}
$Zn(NH_3)_4^{2+}$	7.8×10^8
$Al(OH)_4$	3×10^{33}
$Be(OH)_{4^{2-}}$	4×10^{18}
$Co(OH)_{4^{2-}}$	5×10^9
$Ni(OH)_{4^{2-}}$	2×10^{28}
Pb(OH) ₃ -	8×10^{13}
$Sn(OH)_3$	3×10^{25}
$Zn(OH)_{4^{2-}}$	3×10^{15}
$Ag(S_2O_3)_2^{3-}$	4.7×10^{13}