Chem. 112
Final Exam Practice

Part 4

1) The decomposition of hydrogen iodide follows the equation $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ and it is second order with a rate constant of $1.6 \times 10^{-3} \mathrm{~L} / \mathrm{mol} \mathrm{sec}$ at $700^{\circ} \mathrm{C}$. If the initial concentration of HI in the container is $3.4 \times 10^{-2} \mathrm{M}$, how many seconds will it take for the concentration to be reduced to $8.0 \times 10^{-4} \mathrm{M}$?
2) Show the nuclear equation for the positron emission of $\mathrm{N}-14$
3) Show the nuclear equation for the alpha emission of Thorium- 230
4) Show the equation for the hydrolysis of propyl pentanoate. Draw the full structure of the reactant and the main product. Name the product.
5) Show the addition reaction of bromine to 2-pentene. Draw the full structure of the reactant and the main product. Name the product.
6) Complete the following table

Name	Structure	Class of Compound

Chem. 112
Final Exam Practice

3-methyloctane		

7) State the type of isomers

8) For the following mechanism:
$\mathrm{Br}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{Br}(\mathrm{g})$
$\mathrm{Br}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{HBr}(\mathrm{g})+\mathrm{H}(\mathrm{g})$
$\mathrm{H}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow \mathrm{HBr}(\mathrm{g})+\mathrm{Br}(\mathrm{g})$
What is the overall reaction?

What is the rate law? (no intermediates in rate law)

What are the intermediate(s) if none write none

Draw and correctly label the reaction diagram:

Chem. 112
Final Exam Practice

Part 3

9) For the following complex ion draw the valence bond theory diagram and the crystal field theory diagram. Label the diagrams as shown in lecture. Label all orbitals.
$\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$
a. Valence bond diagram:
b. Crystal Field diagram

c.	Is the species high spin or low spin	
d.Is the species paramagnetic or diamagnetic		
e.	State the hybridization	
f.	State the shape	
g.	Which is greater crystal field splitting energy or pairing energy?	
h.	Is(are) the ligand(s) weak field or strong field	
i.	Coordination number	
j.	Name the species	

Chem. 112
Final Exam Practice
10) A complex ion produces a splitting energy of $195 \mathrm{KJ} / \mathrm{mol}$.

What color is absorbed? \qquad

What color is seen? \qquad
Is this a relatively large or small splitting energy? \qquad
Can you tell if the compound is high spin or low spin? \qquad

Is this likely a strong field ligand or weak field ligand? \qquad
What causes this split?
11) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is violet. Another chromium complex is green. Would that compound most likely be $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}$ or $\left[\mathrm{Cr}(\mathrm{Cl})_{6}\right]^{4-}$

Answer \qquad

Give a three sentence explanation:

Chem. 112
Final Exam Practice

Part 2

12) State the 7 types of hybridization and the shape that corresponds

State the kind of hybridization for the following shapes

Shape	Hybridization

13) Draw the VSEPR structures labeling angles correctly. Correctly show wedges and hash marks. VSEPR structure must be correct to receive credit. State the molecular geometry.

Formula	VSEPR Drawing	Molecular geometry
TeBr $_{6}$		
$\mathbf{G e F}_{4}{ }^{2-}$		

Chem. 112
Final Exam Practice
14. For the following molecules or ions draw the box diagrams as shown in class. Label all orbitals showing relative energy of each. State the type of hybridization. Draw the contour diagram for each labeling correctly all angles and orbitals. Contour diagram must be drawn correctly to receive credit. Draw it large. Show all electrons. State the shape of the molecule or ion.
A. $\mathrm{XeBr}_{2} \mathrm{I}_{2}$

Box Diagram

Contour Diagram

Chem. 112
Final Exam Practice
15) For the following molecules or ions draw the box diagrams as shown in class. Label all orbitals showing relative energy of each. State the type of hybridization. Draw the contour diagram for each labeling correctly all angles and orbitals. Contour diagram must be drawn correctly to receive credit. Draw it large. Show all electrons. State the shape of the molecule or ion.
B. $\mathrm{C}_{2} \mathrm{Br}_{4}$

Box Diagram

Contour Diagram

Chem. 112
Final Exam Practice

Part 1

16) List a possible set of four quantum numbers $(n, \ell, m \ell, m \mathrm{~s})$ in order, for the highest energy electron in iron, Fe . Refer to the periodic table as necessary. Enter four numbers separated by commas (e.g., 3,0,-1,1/2). Also give the electron configuration for $\mathrm{Fe}\left(1 \mathrm{~S}^{1}\right.$ etc.)

Quantum \#s:

Electron configuration:

17. Draw the orbital diagram (boxes and arrows) that represents the ground state of P
18. For the following reaction calculate Gibbs free energy and state if the reaction is spontaneous at $25{ }^{0} \mathrm{C}$.
$2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s}) \Delta \mathrm{H}_{\mathrm{rxn}}=-1269.8 \mathrm{~kJ} \Delta \mathrm{~S}=-364.6 \mathrm{~J} / \mathrm{K}$

Answer
Spontaneous? \qquad Reason \qquad

Chem. 112
Final Exam Practice
19. For the following cell reaction at $25^{0} \mathrm{C}$:

$$
\mathrm{Pb}^{0}\left|\mathrm{~Pb}^{2+} 0.40 \mathrm{M}\right|\left|\mathrm{Au}^{3+}\right| \mathrm{Au}^{0} 0.025 \mathrm{M}
$$

Label the diagram:
a) Show the location of each species
b) Label all parts of the cell (salt bridge, cathode, anode, + electrode, - electrode etc.)
c) Show the flow of electrons
d) Write the half reaction under each beaker
e) Label oxidation and reduction reactions

Answer
g) Calculate the EMF (E) for this cell under the given conditions

Answer \qquad
Calculate $\boldsymbol{\Delta}$ G:

Answer \qquad
Is this reaction spontaneous \qquad Reason: \qquad

Chem. 112
Final Exam Practice

$$
\mathrm{I}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{SCN}^{-} \mathrm{NH}_{3}<\mathrm{en}, \mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}<\mathrm{CO}
$$

Color	Wavelength
Violet	$400-430$
blue	$430-480$
green	$480-560$
yellow	$560-590$
orange	$590-630$
red	$630-750$

Plank's Constant $=6.626 \times 10^{-34} \mathrm{~J}(\mathrm{sec})$

