

PERIODIC TABLE IA

PERIODIC TABLE IA

V. MATTER-Matter is anything that occupies space and has mass.

Symbols and Formulas

Symbols represent individual atoms of an element:						
Н	0	CI	Br	Ag		
Form	nulas re	eprese	nt mole	cules o	or units of a com	pound
H ₂ O		CO ₂			C ₂ H ₅ OH	Ca(NO ₃) ₂

Molecular mass is the sum of the atomic masses of all of the atoms in the molecule

A. PHYSICAL STATES OF MATTER

	SOLID	LIQUID	GAS
Attraction between molecules			
Movement of molecules			
Shape			
Density			
Expansion when heated			
Ability to flow Or diffuse			
Distance between particles			
Compressibility			
Made of:			

Types of solids

B. PHYSICAL PROPERTIES

Each substance has a unique set of properties. <u>Physical properties</u> can be seen or measured with out changing the chemical composition.

Other Properties of liquids

Surface tension

Viscosity

Cohesion

Adhesion

Diffusion

Other Properties of gases

Pressure

Temperature

VI. KINETIC MOLECULAR THEORY

Α.	Gases	are	compo	sed of	such	extrem	ely tiny	atoms	or	molecule	s that	are	widely
se	parated	by e	empty s	space.									

- B. Gas particles move in a random, rapid, and continuous motion, thus has kinetic energy.
- C. Gas particles move so rapidly and are so far apart the there is essentially no force of attraction between the particles.
- D. Particles collide frequently with each other and with the walls of the container, the collisions are perfectly "elastic" (No net loss of energy as a result of a collision)

Describing Gases

Each of the measurable quantities below can be used to describe a gas. Each of these quantities is related to all of the other quantities. So if one quantity is changed the others can be caused to change. There are four gas laws that describe how gases change.

The four quantities are

Pressure Temperature Volume

Number of molecules

liquid -> gas

Charle's law says that if the temperature of a gas is increased without changing the pressure or number of
molecules, the volume of the gas will increase The Kelvin temperature is directly proportional to volume at
constant pressure and number of molecules.

P Constant V ↑						
n Constant T 介						
Boyle's law says that if the molecules the volume will number of molecules						
P						
V						
n T						
1						
Gay-Lussac's law says the number of molecules the at constant	volume will		The pressure	d at constan is	t proportio	_ and constant anal to the
Р						
V						
n T						
1						
Avogadro's law says that constant	if the _ the volume	will increase.	of a gas is The	increased a	at constant pr	and roportional to the
volume at constant press	ure and	·				
The ideal gas law lets us	relate all four	quantities:				
PV is directly proportiona	I to nT		or		$PV \ \alpha \ nT$	
	Р	V	α	n	Т	
	1	С	α	С	?	
	-		α			
			α			
			α			
			α			
			α			
			α			
C. PHYSICAL CHANG A physical change		sical properties	s of a substan	ice without a	altering its chem	ical composition.
There is no new su					-	
Usually when:						
1. Changing	a sample of n	natter from one	physical state	e to another		
solid -> liquid						
liquid -> solid						

solid -> gas
2. Changing the size or shape of the substance
3. Mixing or dissolving two or more substances
D. OUENION PROPERTIES
 D. CHEMICAL PROPERTIES Chemical properties are observed or measure only when it is undergoing a chemical reaction.
E. CHEMICAL CHANGES
A chemical change is a process that changes the chemical composition of a substance
Examples of chemical reactions
Evidence of a chemical reaction occurring A
Evidence of a chemical reaction occurring
Evidence of a chemical reaction occurring A
2. Evidence of a chemical reaction occurring AB
2. Evidence of a chemical reaction occurring ABC

F. EXAMPLES OF PHYSICAL VS CHEMICAL CHANGES

	1. Paper burns to produce CO ₂ and H ₂ O
	2. Gasoline evaporates
	3. The statue of liberty turns green
	4. Tearing paper
	5. A tree stump rots
	6. Dissolving a package of jello in water
VII.	Types of Particles
A.	Atoms are the smallest units/particles that can exist that will have the characteristics of the element.
B.	Molecules are the smallest unit of two or more atoms covalently bonded together. (more later)

C. An ion is a positively or negatively charged atom or group of atoms

<u>VIII</u> <u>A.</u>

A. Pure Substances Matter with a definite composition a. Element - an element cannot be broken down by simple chemical means. Symbols of Elements:
 b. <u>Compound</u> - a compound can be broken down into two or more elements. Two or more elements chemically bonded together. (1) Ionic compounds - (+) and (-) charged ions bonded together by the force of their positive and negative charges Formulas of Compounds:
(2) Molecular compounds - Two or more atoms covalently bonded together (more later) Formulas of Compounds:
B. Mixture – Physical mixture of two or more substances. a. Homogeneous mixture is uniform in appearance and properties throughout. -could consist of 2 or more substances.

b. <u>Heterogeneous mixture</u> has 2 or more <u>physically</u> distinct phases.

8

Examples:

Compounds	Mixtures
Pure	Not pure
One kind of particle	More than one kind of particle
Can be broken down into component elements only by chemical change	Can be separated by physical change
Elements are combined chemically by chemical bonds	Parts can be elements or compounds and are not held together by chemical bonds, only by physical attractions
Elements no longer have their original properties	Elements or compounds that make up the mixture retain their own properties
Elements are bonded in a set or definite ratio	Element or compound parts can be mixed in any ratio

CHART-summary

IX. Scientific Law and Theory

1. Scientific Law

2. Scientific Theory

Kinetic theory

X. Conservation of Mass
In a chemical change matter cannot be created nor destroyed. Example:

XI. Conservation of Energy

XII. Electrical Character

Oppositely charged objects attract each other

Objects that are the same charge repel each other
Electrostatic Force
XIII. Energy - Chemical, electrical, heat or light a. Kinetic energy - Energy due to the motion of the object
b. <u>Potential energy</u> - due to the position or chemical composition of the object Examples:
c. Thermal energy(1) Endothermic Reaction - Heat is absorbed in a reaction
(2) Exothermic reaction - Heat is released in a reaction