WORKSHEET- STOICHIOMETRY AND CHEMICAL FORMULA CALCUATIONS **SET A:** (Time required, 1 hour) 1. A compound with the formula, $B_xH_{20}O_3$, contains 36.14 % by mass oxygen. What is the value of the integer, x? 1) Ans: x = 6 2. A mixture of cobalt(II) oxide and cobalt(III) oxide contains 32.50 % by mass cobalt (II) oxide. What is the total number of oxide ions in a 122 g of the mixture? 2) Ans: 1.22 x 10²⁴ oxide ions 3a) Ans: 9.18 % S 3. A sulfur containing compound is treated chemically to convert all its sulfur into barium sulfate. A 8.19 mg sample of the compound gave 5.46 mg barium sulfate. a) What is the percentage of sulfur in the compound? If there is one sulfur atom in the molecule, what is the molar mass of the compound? b) If there is one sulfur atom in the molecule, what is the molar mass of the compound ? 3b) Ans: 349 g/mole 4. An alloy of Co, Rh and Mn contains these elements in the atomic ratio of 2:5:2, respectively. What is the mass of a sample of this alloy containing a total of 8.75×10^{21} atoms? 4) Ans: 1.20 g 5. The percent of aluminum in the compound, Al_2X_3 , is 18.56 %. What is the molar mass of element X? 5) Ans:79.00 g/mole 6. 3.9104 g sample of a compound made of carbon, hydrogen, nitrogen, and oxygen is burned completely. 3.820 g CO_2 and 3.125 g H_2O are produced. Analysis of nitrogen showed that the compound contains 46.62 % by mass nitrogen. The molar mass of the compound is about 170 $\,$ + 15 g/mole. a) Calculate the empirical formula of the compound. 6a) Ans: $C_2H_8N_3O$ 6b) Ans: $C_4H_{16}N_6O_2$ b) What is the molecular formula of the compound? 7. 169 g $FeCr_2O_4$, 298 g K_2CO_3 and an excess of O_2 (g) are sealed in a reaction vessel and allowed to react at high temperature. The amount of K_2CrO_4 obtained is 194 g. Calculate the percent yield of K_2CrO_4 . SET B: (time required, 1 hour) 1. Excess amount of HCl is added to a mixture of CaCO₃ and K₂CO₃. The mixture reacted completely. $$CaCO_3 + 2 HCI \rightarrow CaCl_2 + H_2O + CO_2$$ $K_2CO_3 + 2 HCI \rightarrow 2 KCI + H_2O + CO_2$ 4.48~g~CO2 and 3.57~g~KCl are produced along with some $CaCl_2$ and H_2O . Calculate the mass of the mixture. 1) Ans: 11.10 g mixture 2. The percent of manganese in the compound, Mn_5X_2 , is 42.10 %. What is the molar mass of element X? 2) Ans: 186.9 g/mole A mixture of potassium phosphate and potassium nitrate contains 36.55 % by mass potassium nitrate. What is the total number of potassium ions in 83.5 g mixture? 3) Ans: 6.32 x 10²³ ions A carbon containing compound was treated chemically to convert all its carbon into SrCO₃. A 31.23 g sample of the compound gave 1.203 x 10² g SrCO₃. a) What is the percentage of carbon in the compound? 4a) 31.3 % C b) If there are three carbon atoms in a molecule of the compound, what is the molar mass of the compound? 4b) Ans: 114.8 g/mole 5. 80.0 g KClO₃ are mixed with 59.5 g HCl and allowed to react according to the equation: $2 \text{ KCIO}_3 + 4 \text{ HCI} \rightarrow$ 2 KCl + 2 ClO₂ + Cl₂ + 2 H₂O (Molar mass: KCl = 74.6, KClO₃ = 122.6, HCl = 36.5, ClO₂ = 67.5, Cl₂ = 71.0, H₂O = 18.0 g/mole) The amount of Cl2 produced is 18.7 g. Calculate the percent yield of Cl2. 5) Ans: 80.6 % - 28.50 g sample of a compound of carbon, sulfur, hydrogen, and oxygen is burned. 35.25 g CO₂ and 14.65 g SO₂ are produced. Analysis of hydrogen showed that the compound contains 8.514 % hydrogen by mass. The molar mass of the compound is 500 + 5 g/mole. - a) Calculate the empirical formula of the compound. 6a) Ans:C₇H₂₁S₂O₅ b) What is the molecular formula of the compound? 6b) Ans: C₁₄H₄₂S₄O₁₀ ## SET C: A phosphorus containing compound is treated chemically to convert all its phosphorus into Mg₃(PO₄)₂. A 7.88 g sample of the compound gave 4.75 g Mg₃(PO₄)₂. What is the percentage by mass of phosphorus in the compound? 1) Ans: 14.2 % P The percent by mass of boron in the compound, B₇X₃, is 42.1 %. What is the molar mass of X? 2) Ans: 34.7 g/mole A 39.11 g sample of a compound containing Cr is analyzed to show the presence of 86.22 % Cr. It is found that there are five chromium atoms per molecule of the compound. What is the molar mass of the compound? 3) Ans: 301.6 g/mole 4. The percent by mass of silicon in the compound, Si₈X₃, is 72.33 %. What is the molar mass of element X? 4) ans: 28.65 g/mole 5. Consider the following reaction: $3 \text{ CaBr}_2 + 2 \text{ Na}_3\text{PO}_4 \rightarrow \text{Ca}_3(\text{PO}_4)_2 + 6 \text{ NaBr}$ A reaction mixture contained 22.44 g of CaBr₂ and 16.85 g Na₃PO₄. (Molar mass: $CaBr_2 = 199.9$, $Na_3PO_4 = 164.0$, $Ca_3(PO_4)_2 = 207.2$, NaBr = 102.9 g/mole) a. What is the mass of $Ca_3(PO_4)_2$ produced after the reaction is complete? b. How many grams of each reactant is left after the reaction is complete? 6b) Ans: zero grams of CaBr₂ and 4.58 g Na₃PO₄