
Math 140

Trigonometry 11th edition Lial, Hornsby, Schneider, and Daniels

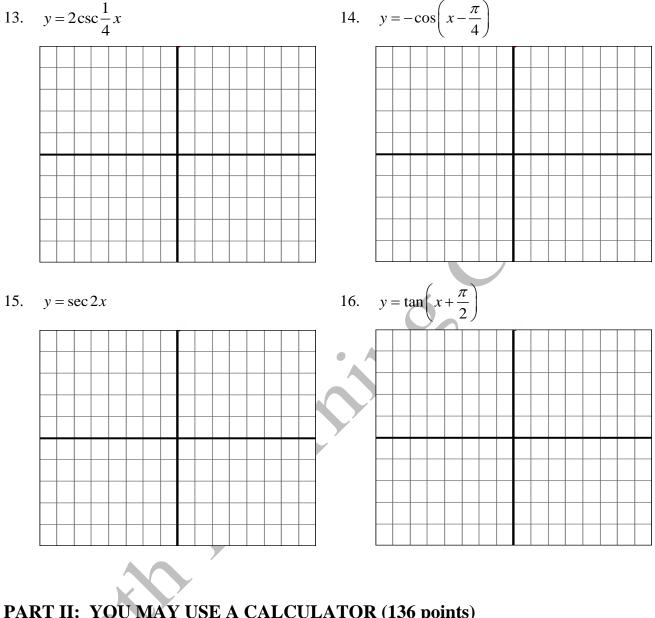
Practice Midterm (Ch. 1-4)

PART I: NO CALCULATOR (64 points)

(4.1, 4.2, 4.3, 4.4)

(4.1, 4.2, 4.3, 4.4)

Find the amplitude, the period, any vertical translation, and any phase shift of the following functions. If not applicable, write "*none*" in the blank.


7.	$y = \cot 3x$	8.	$y = 6\cos 8 \left(x + \frac{3\pi}{4} \right)$	9.	$y = 5 - \sin\frac{2}{3}x$
	amplitude:		amplitude:		amplitude:
	period:		period:		period:
	vertical translation: phase shift:		vertical translation:		vertical translation:
			phase shift:		phase shift:
10.	$y = \frac{1}{2}\csc\left(2x - \frac{\pi}{4}\right)$	11.	$y = -9 + \tan\frac{1}{2}x$	12.	$y = \sec 9 \left(x - \frac{5\pi}{6} \right)$
	amplitude:		amplitude:		amplitude:
	period:		period:		period:
	vertical translation:		vertical translation:		vertical translation:
	phase shift:		phase shift:		phase shift:

©Cerritos College MLC

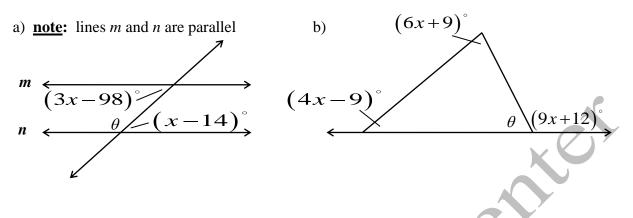
No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.

(4.1, 4.2, 4.3, 4.4)

Graph the following functions over a two-period interval. Identify and label any asymptotes.

PART II: YOU MAY USE A CALCULATOR (136 points)

- (1.1)
- Convert the following angles to decimal degrees. If applicable, round to the nearest hundredth of 1. a degree.


2

a) 76°48' b) 34°51'35" c) 249°15'

- 2. Convert to degrees, minutes, and seconds. If applicable, round to the nearest second.
 - c) 102.9004° a) 310.485° b) 58.3°

(1.2)

3. Find the measure of θ .

(1.3)

- 4. Find the exact values of the six trigonometric functions for the angle θ in standard position having the given point on its terminal side. Rationalize denominators when applicable.
 - a) (-8,15) b) (9,-2) c) (0,-2)

(1.4)

5. Find the exact values of the five remaining trigonometric functions for each angle θ . Rationalize denominators when applicable.

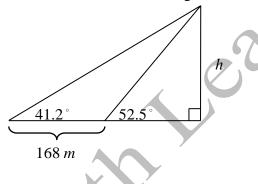
a)
$$\sin \theta = \frac{\sqrt{3}}{5}$$
, and $\cos \theta < 0$ b) $\sec \theta = -\frac{5}{4}$ and θ is in quadrant III.

(2.1, 2.2)

Find the exact value of each expression.

6.	cos 30°	7.	$\sin 270^{\circ}$	
8.	cot 315°	9.	$\tan 90^{\circ}$	
10.	sin 240°	11.	$\csc 210^{\circ}$	
12.	sec(-45°)	13.	$\tan(-300^{\circ})$	

(2.3)


- 14. Find a value of θ in the interval $\begin{bmatrix} 0^{\circ}, 90^{\circ} \end{bmatrix}$ that satisfies the given statement. Write your answer in decimal degrees to four decimal places. a) $\csc \theta = 2.3861147$ b) $\tan \theta = 2.674321$
- 15. Find *all* values of θ in the interval $\begin{bmatrix} 0^{\circ}, 360^{\circ} \end{bmatrix}$ that satisfies the given statement. Write your answer in decimal degrees to two decimal places. a) $\sec \theta = -9.56677$ b) $\sin \theta = -0.53$

(2.4)

16. Solve the following right triangles where C = 90°. Make sure to use the correct number of significant digits in your final answer.
a) B = 47°53', b = 298.6 m
b) A = 58°30', c = 748 in.
c) a = 129.7 ft, b = 368.1 ft

(2.5)

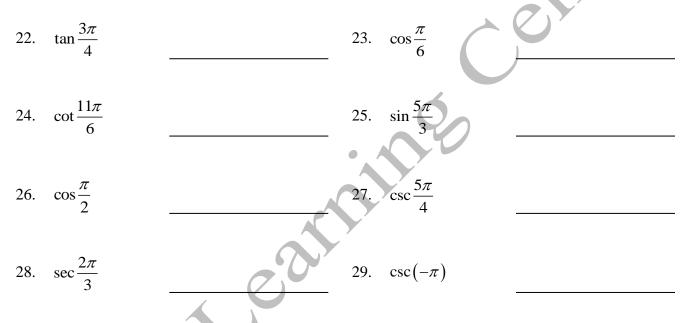
17. Find *h* as indicated in the figure.

 Suppose that an observer for a radar station is located at the origin of a coordinate system. Find the bearing of an airplane located at the following points. Express the bearing giving the direction from a north-south line.

a) (3, -3) b) (-5, 5)

19. Solve the following problem. Include a labeled sketch in your work.
A ship leaves a pier on a bearing of 118° and travels for 75 km. It then turns and continues on a bearing of 28° for 53 km. How far is the ship from the pier, to the nearest km?

(3.1)


20. Convert the following angles to radians. Leave answers as multiples of π . a) 110° b) 216°

(3.2)

21. A central angle of a circle with radius 8.973 cm intercepts an arc of 7.683 cm.
a) Find the radian measure of the angle.
b) Find the measure of the angle in degrees. *Make sure to use the correct number of significant digits in your final answer.*

(3.3)

Find each *exact* function value. Rationalize denominators when applicable.

30. Find the *exact* value(s) of β in the interval $[0, 2\pi]$ that makes the given statement true.

a)
$$\sin \beta = -\frac{\sqrt{3}}{2}$$
 b) $\cos \beta = \frac{\sqrt{2}}{2}$ c) $\tan \beta = -\sqrt{3}$

Math 140 Practice Midterm (cont.)

Part I Answers:

- 1) f) $y = \cot x$
- **2**) *a*) $y = \sin x$
- $3) \quad b) \quad y = \cos x$
- $4) \quad d) \quad y = \csc x$
- **5**) *c*) $y = \tan x$
- $6) \quad e) \quad y = \sec x$
- 7) **amplitude:** *not applicable (or none)*

vertical translation: none

period: $\frac{\pi}{3}$

period: $\frac{\pi}{4}$

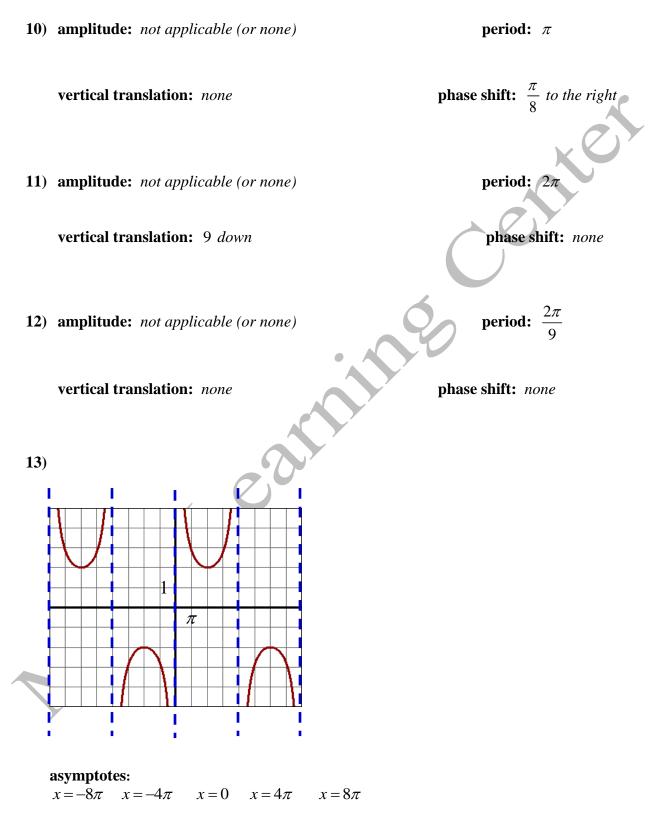
phase shift: none

8) amplitude: 6

vertical translation: none

phase shift: $\frac{3\pi}{4}$ to the left

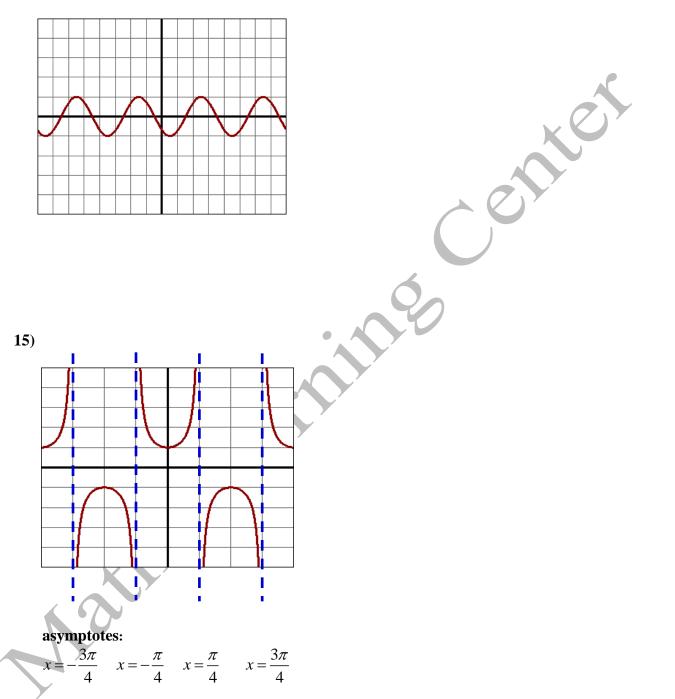
rer

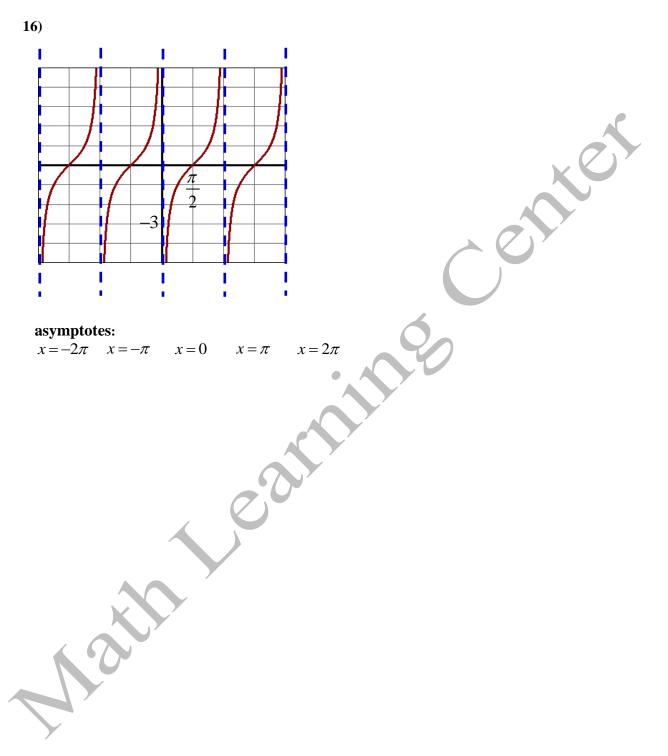

9) amplitude: 1

vertical translation: 5 up

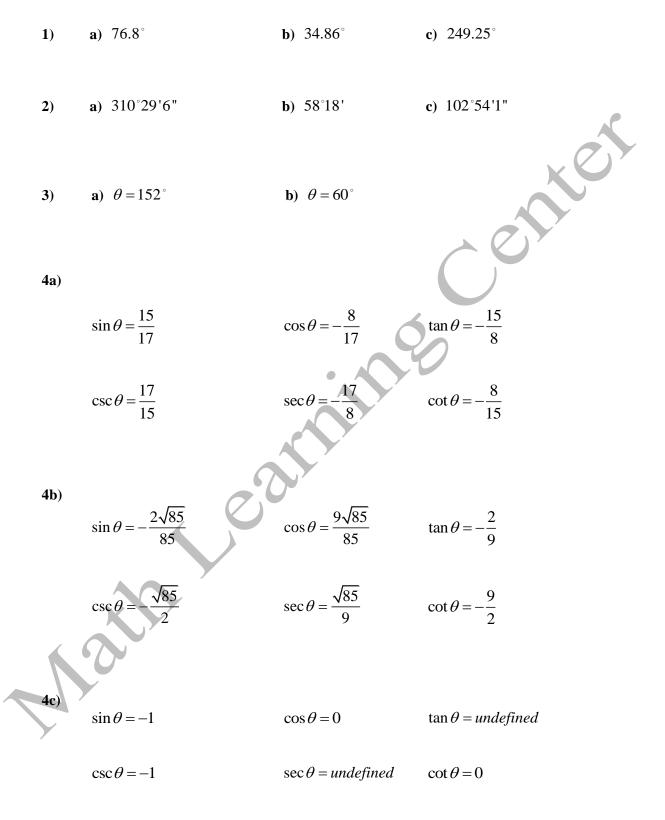
period: 3π

phase shift: none


Part I Answers:


©Cerritos College MLC No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.

Part I Answers:



Part I Answers:

Math 140 Practice Midterm (cont.)

Part II Answers:

Part II Answers:

5a)

$$\cos\theta = -\frac{\sqrt{22}}{5} \qquad \tan\theta = -\frac{\sqrt{66}}{22} \qquad \qquad \csc\theta = \frac{5\sqrt{3}}{3}$$

Xer

sec
$$\theta = -\frac{5\sqrt{22}}{22}$$
 cot $\theta = -\frac{\sqrt{66}}{3}$
5b)
sin $\theta = -\frac{3}{5}$ cos $\theta = -\frac{4}{5}$ tan $\theta = \frac{3}{4}$
csc $\theta = -\frac{5}{3}$ cot $\theta = \frac{4}{3}$
6) $\frac{\sqrt{3}}{2}$
7) -1
8) -1
9) undefined

6)
$$\frac{\sqrt{3}}{2}$$

Γ.

10)11) -2

 $\sqrt{2}$

 $\sqrt{3}$

12)

13)

©Cerritos College MLC No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.

Part II Answers:

©Cerritos College MLC No part of this work may be reproduced without the prior written consent of the Cerritos College Math Learning Center.