Trigonometry $11^{\text {th }}$ edition Lial, Hornsby, Schneider, and Daniels

Practice Midterm
(Ch. 1-4)

PART I: NO CALCULATOR (64 points)

(4.1, 4.2, 4.3, 4.4)

Match each graph with one of the basic circular functions listed:
a) $y=\sin x$
b) $y=\cos x$
c) $y=\tan x$
d) $y=\csc x$
e) $y=\sec x$
f) $y=\cot x$
1.

2.

3.

4.

5.

6.

(4.1, 4.2, 4.3, 4.4)

Find the amplitude, the period, any yertical translation, and any phase shift of the following functions. If not applicable, write "none" in the blank.
7. $y=\cot 3 x$
amplitude:
period:
vertical translation:
phase shift:
10. $y=\frac{1}{2} \csc \left(2 x-\frac{\pi}{4}\right)$
amplitude:
period:
vertical translation:
phase shift:
8. $y=6 \cos 8\left(x+\frac{3 \pi}{4}\right)$
amplitude:
period:
vertical translation:
phase shift:
11. $y=-9+\tan \frac{1}{2} x$
amplitude:
period:
vertical translation:
phase shift:
9. $y=5-\sin \frac{2}{3} x$
amplitude:
period:
vertical translation:
phase shift:
12. $y=\sec 9\left(x-\frac{5 \pi}{6}\right)$
amplitude:
period:
vertical translation:
phase shift:
(4.1, 4.2, 4.3, 4.4)

Graph the following functions over a two-period interval. Identify and label any asymptotes.

15. $y=\sec 2 x$

14. $y=-\cos \left(x-\frac{\pi}{4}\right)$

16. $y=\tan \left(x+\frac{\pi}{2}\right)$

PART II: YOU MAY USE A CALCULATOR (136 points)

(1.1)

1. Convert the following angles to decimal degrees. If applicable, round to the nearest hundredth of a degree.
a) $76^{\circ} 48^{\prime}$
b) $34^{\circ} 51^{\prime} 35^{\prime \prime}$
c) $249^{\circ} 15^{\prime}$
2. Convert to degrees, minutes, and seconds. If applicable, round to the nearest second.
a) 310.485°
b) 58.3°
c) 102.9004°

(1.2)

3. Find the measure of θ.
a) note: lines m and n are parallel

(1.3)
4. Find the exact values of the six trigonometric functions for the angle θ in standard position having the given point on its terminal side. Rationalize denominators when applicable.
a) $(-8,15)$
b) $(9,-2)$
c) $(0,-2)$
(1.4)
5. Find the exact values of the five remaining trigonometric functions for each angle θ.

Rationalize denominators when applicable.
a) $\sin \theta=\frac{\sqrt{3}}{5}$, and $\cos \theta<0 \quad$ b) $\sec \theta=-\frac{5}{4}$ and θ is in quadrant III.

(2.1, 2.2)

Find the exact value of each expression.
6. $\quad \cos 30^{\circ}$
8. $\cot 315^{\circ}$
10. $\sin 240^{\circ}$
12. $\sec \left(-45^{\circ}\right)$
7. $\sin 270^{\circ}$
9. $\tan 90^{\circ}$
11. $\csc 210^{\circ}$
13. $\tan \left(-300^{\circ}\right)$
(2.3)
14. Find a value of θ in the interval $\left[0^{\circ}, 90^{\circ}\right)$ that satisfies the given statement.

Write your answer in decimal degrees to four decimal places.
a) $\csc \theta=2.3861147$
b) $\tan \theta=2.674321$
15. Find all values of θ in the interval $\left[0^{\circ}, 360^{\circ}\right)$ that satisfies the given statement.

Write your answer in decimal degrees to two decimal places.
a) $\sec \theta=-9.56677$
b) $\sin \theta=-0.53$
(2.4)
16. Solve the following right triangles where $C=90^{\circ}$.

Make sure to use the correct number of significant digits in your final answer.
a) $B=47^{\circ} 53^{\prime}, b=298.6 \mathrm{~m}$
b) $A=58^{\circ} 30^{\prime}, c=748 \mathrm{in}$.
c) $a=129.7 \mathrm{ft}, b=368.1 \mathrm{ft}$
(2.5)
17. Find h as indicated in the figure.

18. Suppose that an observer for a radar station is located at the origin of a coordinate system.

Find the bearing of an airplane located at the following points.
Express the bearing giving the direction from a north-south line.
a) $(3,-3)$
b) $(-5,5)$
19. Solve the following problem. Include a labeled sketch in your work.

A ship leaves a pier on a bearing of 118° and travels for 75 km . It then turns and continues on a bearing of 28° for 53 km . How far is the ship from the pier, to the nearest km ?

(3.1)

20. Convert the following angles to radians. Leave answers as multiples of π.
a) 110°
b) 216°

(3.2)

21. A central angle of a circle with radius 8.973 cm intercepts an arc of 7.683 cm .
a) Find the radian measure of the angle.
b) Find the measure of the angle in degrees.

Make sure to use the correct number of significant digits in your final answer.
(3.3)

Find each exact function value. Rationalize denominators when applicable.
22. $\tan \frac{3 \pi}{4}$
24. $\cot \frac{11 \pi}{6}$
26. $\cos \frac{\pi}{2}$

28. $\sec \frac{2 \pi}{3}$

23. $\cos \frac{\pi}{6}$
25. $\sin \frac{5 \pi}{3}$
30. Find the exact value(s) of β in the interval $[0,2 \pi]$ that makes the given statement true.
a) $\sin \beta=-\frac{\sqrt{3}}{2}$
b) $\quad \cos \beta=\frac{\sqrt{2}}{2}$
c) $\tan \beta=-\sqrt{3}$

Part I Answers:

1) f) $y=\cot x$
2) a) $y=\sin x$
3) b) $y=\cos x$
4) d) $y=\csc x$
5) c) $y=\tan x$
6) e) $y=\sec x$
7) amplitude: not applicable (or none) vertical translation: none
8) amplitude: 6
vertical translation: none
9) amplitude: 1
vertical translation: $5 u p$
period: $\frac{\pi}{3}$
phase shift: none
period: $\frac{\pi}{4}$
phase shift: $\frac{3 \pi}{4}$ to the left
period: 3π
phase shift: none

Part I Answers:

10) amplitude: not applicable (or none)
vertical translation: none
11) amplitude: not applicable (or none)
vertical translation: 9 down
period: π
phase shift: $\frac{\pi}{8}$ to the right
12) amplitude: not applicable (or none)
vertical translation: none
period: 2π
phase shift: none
period: $\frac{2 \pi}{9}$
phase shift: none
13)

asymptotes:

$$
x=-8 \pi \quad x=-4 \pi \quad x=0 \quad x=4 \pi \quad x=8 \pi
$$

Part I Answers:

14)

15)

asymptotes:

$$
x=-\frac{3 \pi}{4} \quad x=-\frac{\pi}{4} \quad x=\frac{\pi}{4} \quad x=\frac{3 \pi}{4}
$$

Part I Answers:

16)

asymptotes:

$$
x=-2 \pi \quad x=-\pi \quad x=0 \quad x=\pi \quad x=2 \pi
$$

Part II Answers:

1)

a) 76.8°
b) 34.86°
c) 249.25°
2)
a) $310^{\circ} 29^{\prime} 6^{\prime \prime}$
b) $58^{\circ} 18^{\prime}$
c) $102^{\circ} 54^{\prime \prime} 1^{\prime \prime}$
3)
a) $\theta=152$
b) $\theta=60^{\circ}$

4a)

$$
\begin{array}{ll}
\sin \theta=\frac{15}{17} & \cos \theta=-\frac{8}{17} \\
\csc \theta=\frac{17}{15} & \sec \theta=-\frac{17}{8}
\end{array}
$$

4b)

$$
\begin{array}{lll}
\sin \theta=-\frac{2 \sqrt{85}}{85} & \cos \theta=\frac{9 \sqrt{85}}{85} & \tan \theta=-\frac{2}{9} \\
\csc \theta=-\frac{\sqrt{85}}{2} & \sec \theta=\frac{\sqrt{85}}{9} & \cot \theta=-\frac{9}{2}
\end{array}
$$

4e)

$$
\sin \theta=-1
$$

$\cos \theta=0$
$\tan \theta=$ undefined

$$
\csc \theta=-1 \quad \sec \theta=\text { undefined } \quad \cot \theta=0
$$

Part II Answers:

5a)

$$
\cos \theta=-\frac{\sqrt{22}}{5} \quad \tan \theta=-\frac{\sqrt{66}}{22} \quad \csc \theta=\frac{5 \sqrt{3}}{3}
$$

$$
\sec \theta=-\frac{5 \sqrt{22}}{22} \quad \cot \theta=-\frac{\sqrt{66}}{3}
$$

5b)

$$
\begin{array}{ll}
\sin \theta=-\frac{3}{5} & \cos \theta=-\frac{4}{5} \\
\csc \theta=-\frac{5}{3} & \cot \theta=\frac{4}{3}
\end{array}
$$

6) $\frac{\sqrt{3}}{2}$
7) -1
8) -1
9) undefined
10)
11) -2
12) $\sqrt{2}$
13) $\sqrt{3}$

Part II Answers:

14)

$\begin{array}{ll}\text { a) } 24.7772^{\circ} & \text { b) } 69.4979^{\circ}\end{array}$
a) $96.00^{\circ}, 264.00^{\circ}$
b) $212.01^{\circ}, 327.99^{\circ}$

16a)
$a=270.0 \mathrm{~m}$
$c=402.5 \mathrm{~m}$
$A=42^{\circ} 07^{\prime}$

16b)
$a=638$ in.
$b=391 \mathrm{in}$.
$B=31^{\circ} 30^{\prime}$

16c)
$c=390.3 \mathrm{ft}$
$A=19^{\circ} 25^{\prime}$
$B=70^{\circ} 35^{\prime}$
17) $\quad h=448 m$
18)
a) $S 45^{\circ} E$
b) $N 45^{\circ} \mathrm{W}$
19)

92 km
20)
a) $\frac{11 \pi}{18}$
b) $\frac{6 \pi}{5}$
21)
a) 0.8562
b) 49.06°
22)
-1
23)

$$
\frac{\sqrt{3}}{2}
$$

24)

$$
-\sqrt{3}
$$

25)

26)

$$
-\sqrt{2}
$$

28)

-2
29)
undefined
30)
a) $\frac{4 \pi}{3}, \frac{5 \pi}{3}$
b) $\frac{\pi}{4}, \frac{7 \pi}{4}$
c) $\frac{2 \pi}{3}, \frac{5 \pi}{3}$

