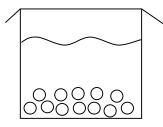

CHEMISTRY 111 LECTURE EXAM IV Material PART 1 CHEMICAL EQUILIBRIUM

Chapter 14


I Dynamic Equilibrium

I. In a closed system a liquid obtains a <u>dynamic equilibrium</u> with its vapor state

Dynamic equilibrium: rate of evaporation = rate of condensation

 $\underline{\text{II.}}$ In a closed system a solid obtains a $\underline{\text{dynamic equilibrium}}$ with its dissolved state

Dynamic equilibrium: rate of dissolving = rate of crystallization II Chemical Equilibrium

I. EQUILIBRIUM

A. BACKGROUND

Consider the following reversible reaction:

 $aA + bB \Rightarrow cC + dD$

1. The forward reaction (\neg) and reverse (\neg) reactions are occurring simultaneously.

2. The <u>rate</u> for the forward reaction is **equal** to the <u>rate</u> of the reverse reaction and a dynamic equilibrium is achieved.

3. The <u>ratio of the concentrations</u> of the products to reactants is constant.

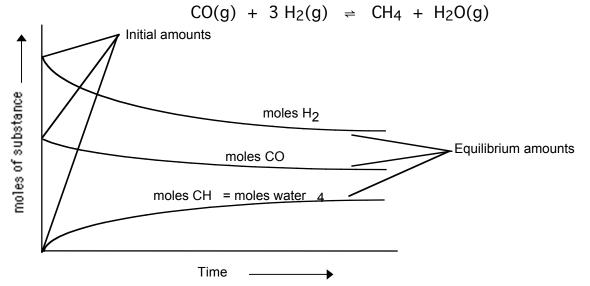
B. THE EQUILIBRIUM CONSTANT - Types of K's

Kc
Кс & Кр
Ка
Kb
Ksp
Kw
K _h
β _η

General Keq

C. EQUILIBRIUM CONSTANT

For the reaction, $aA + bB \Rightarrow cC + dD$ The equilibrium constant ,K, has the form: $K_{C} = \frac{[C]^{C} [D]^{d}}{[A]^{a} [B]^{b}}$


- D. WRITING K's
 - $1. N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)$
 - 2. $2 \text{ NH}_3(g) \Rightarrow \text{N}_2(g) + 3 \text{H}_2(g)$

E. MEANING OF K

- 1. If K > 1, equilibrium favors the products
- 2. If K < 1, equilibrium favors the reactants
- 3. If K = 1, neither is favored

F. ACHIEVEMENT OF EQUILIBRIUM

Chemical equilibrium is established when the rates of the forward and reverse reactions are equal.

G. OBTAINING EQUILIBRIUM CONSTANTS FOR REACTIONS

1. For the reaction: $N_2O_4(g) \Rightarrow 2 NO_2(g)$

the concentrations of the substances present in an equilibrium mixture at 25°C are: $[N_2O_4] = 4.27 \times 10^{-2} \text{ mol/L}$ $[NO_2] = 1.41 \times 10^{-2} \text{ mol/L}$ What is the value of K_c for this temperature?

2. For the reaction: 2 ONCCl(g) \Rightarrow 2 NO (g) + Cl₂ (g)

1.00 mol of ONCl (g) at 500°C is introduced into a one-liter container. At equilibrium, the ONCL is 9.0% dissociated. What is the value of K_c at 500°C?

$$2 \text{ ONCl}(g) \neq 2 \text{ NO}(g) + \text{Cl}_2(g)$$

Initial Change at Equilibrium

H. HETEROGENEOUS EQUILIBRIA

When equilibrium between substances involve two or more phases it is called <u>Heterogeneous</u> <u>Equilibria</u>. The concentration of a pure solid or a pure liquid in their standard states is constant (at constant T° and P).

Therefore, the concentrations of solids or liquids involved in a heterogeneous equilibrium are included in the value of K_c and <u>do not</u> appear in the equilibrium constant expression.

Write the K_c expression for:

1. $CaCO_3(s) \Rightarrow CaO(s) + CO_2(g)$

2.
$$3 \text{ Fe}(s) + 4 \text{ H}_2\text{O}(g) \Rightarrow \text{Fe}_3\text{O}_4(s) + 4 \text{H}_2(g)$$

<u>Solids</u> do not appear in the equilibrium constant.

```
<u>Pure liquids</u> do not appear in the equilibrium constant.
H<sub>2</sub>O(I) for example.
```

I. THE EQUILIBRIUM CONSTANT, KP FOR GASES

Amounts of gases are often measure by pressure. The partial pressure of a gas is a measure if its concentration. The equilibrium constant, K_p , is written in terms of the partial pressures of gases.

$$CaCO_3(s) \Rightarrow CaO(s) + CO_2(g)$$

The K_p expression is:

```
3 \text{ Fe(s)} + 4 \text{ H}_2\text{O}(g) \Rightarrow \text{Fe}_3\text{O}_4(s) + 4 \text{ H}_2(g)
```

The Kp expression is:

```
Example : For the reaction: FeO(s) + CO(g) \Rightarrow Fe(s) + CO_2(g)
```

at 1000. °C, K_p is 0.403. If CO(g), at a pressure of 1.000 atm, and excess FeO(s) are placed

in

a container at 1000°C, what are the pressures of CO(g) and CO₂(g) when equilibrium is

attained?

$$FeO(s) + CO(g) \Rightarrow Fe(s) + CO_2(g)$$

Initial Change

at Equilibrium

J. THE RELATIONSHIP BETWEEN KC AND KP

$$K_p = K_c (RT)^{\Delta n}$$

Where: **R** is the gas constant

T is the temperature of the system

 Δ n is the change in the number of moles of gas { \sum moles of products gases - \sum moles of reactants gases }

Example 1: For the reaction: $2 SO_3(g) \Rightarrow 2 SO_2(g) + O_2(g)$ at 1100. K, K_c is 0.0271 mol/L. What is K_p at this temperature?

```
Example 2: For the reaction: N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)
at 500. °C, K<sub>p</sub> is 1.50 x 10<sup>-5</sup>/<sub>atm</sub><sup>2</sup>. What is K<sub>c</sub> at this temperature?
```

K. THE EQUILIBRIUM CONSTANT FOR THE SUM OF REACTIONS

When a new chemical equation is obtained by summing individual equations, the equilibrium constant, $K_{overall}$, is the product of the individual equations.

Consider the following: $2 \text{ SO}_{2(g)} + \text{O}_{2}(g) \Rightarrow 2 \text{ SO}_{3}(g)$ $K_{1} =$ $2 \text{ SO}_{3}(g) + 2 \text{ H}_{2}\text{O}(g) \Rightarrow 2 \text{ H}_{2}\text{SO}_{4}(g)$ $K_{2} =$ K_{3}

 $K_3 = K_{overall} =$

L. PREDICTING THE DIRECTION OF REACTION

Given the initial concentrations of reactants and products, how would you predict which direction the reaction will "go" to obtain equilibrium? Left ? or Right?

1. Calculate Reaction Quotient, Q_C

$$Q_{c} = \frac{[C]^{c}_{ini} [D]^{d}_{ini}}{[A]^{a}_{ini} [B]^{b}_{ini}}$$

- 2. Compare Q_c with K_c
- 3. If $Q_c > K_c$, the reaction will go to the left to obtain equilibrium.

If Q_{C} < $K_{\text{C}},$ the reaction will go to the right to obtain equilibrium.

If $Q_c = K_c$, the reaction is at equilibrium.

Example: $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ $K_c = 0.0415 \text{ mol/L}$

Initially, 0.100 mol of $PCI_5(g)$, 0.0500 mol of $PCI_3(g)$, and 0.0300 mol of $CI_2(g)$ is placed in a 1.00 L container. Is this system at equilibrium? If not, which way will the reaction go to obtain equilibrium?

M. CALCULATING EQUILIBRIUM CONCENTRATIONS

 $H_2(g) + CO_2(g) \Rightarrow H_2O(g) + CO(g)$ $K_c = 0.771$ at 75.°C For the Reaction: If 0.0100 mol of H₂ and 0.0100 mol of CO₂ are mixed in a one-liter container at 750°C, what are the concentrations of all substances present at equilibrium?

 $H_2(g) + CO_2(g) \Rightarrow H_2O(g) + CO_2(g)$

Initial Change at Equilibrium

N. LE CHATELIER'S PRINCIPLE

Le Chatelier's principle states: Any change to a system in equilibrium causes a shift in the system to reduce the effect of the change (until equilibrium is again reached) F

$$H_2(g) + I_2(g) \Rightarrow 2 HI(g)$$

If more H₂ were added to a mixture at equilibrium, the system is no longer at equilibrium.

 $Q_c < K_c$. The net reaction would be to the right to restore equilibrium.

If more HI were added to a mixture at equilibrium, the system is no longer at equilibrium.

 $Q_c > K_c$. The net reaction would be to the left to restore equilibrium.

- 1. Changing the Concentration $COCl_2(g) \Rightarrow CO(g) + Cl_2(g)$
 - a. Adding more CO
 - b. Removing some Cl₂
 - c. Adding more COCl₂
 - d. How will any of the above effect the numerical value of K_c ?

2. Changing the Pressure

- a. $\Delta n > 0$ $COCl_2(g) \Rightarrow CO(g) + Cl_2(g)$
 - (1) Increase Pressure
 - (2) Decrease Pressure
- b. $\Delta n < 0$ N₂(g) + 3 H₂(g) \Rightarrow 2 NH₃(g)
 - (1) Increase Pressure
 - (2) Decrease Pressure
- c. $\Delta n = 0$ H₂(g) + I₂(g) \Rightarrow 2 HI(g)
- 3. Changing the Temperature
 - $2 \text{ NH}_3(g)$. $\Rightarrow N_2(g) + 3 \text{ H}_2(g)$ $\Delta \text{ H} = -92 \text{ kJ}$
 - a. Increase Temperature
 - b. Decrease Temperature
- 4. Adding a catalyst

A catalyst increases the rate of reaction and is not consumed in a reaction: The catalyst increases the rate by lowering the energy of activation, E_a

$$H_2O_2(I) \xrightarrow{MnO_2} H_2O(I) + O_2(g)$$

Adding a catalyst to a system has <u>no effect</u> on the equilibrium.

1. A mixture of 0.500 mole of hydrogen and 0.500 mole of lodine gas was placed in a oneliter flask at 430°C. Calculate the concentration of the hydrogen gas, lodine gas and hydrogen iodide gas at equilibrium. The Kc for the reaction is 54.3 at 430 °C

	H ₂ (g)	+	l ₂ (g)	\Rightarrow	2HI (g)
Initial					
Change					
at Equilibrium					

2. Starting with 4.20 moles of HI (g) in a 9.60 liter reaction vessel, calculate the concentration of the hydrogen gas, lodine gas and hydrogen iodide gas at equilibrium. at 430° C. The Kc for the reaction is 54.3 at 430 °C

3. For the reaction: C (s) + CO₂ (g) \Rightarrow 2 CO(g) Kp = 167.5 atm at 1000°C. What is the partial pressure of CO(g) in an equilibrium system in which the partial pressure of carbon dioxide gas is 0.100 atm?

CHAPTER 15

I. ACIDS AND BASES

- A. Acidic Characteristics
 - 1. Tart/Sour taste
 - 2. Produces color changes with indicators
 - 3. Will react with and neutralize a base to form water
 - 4. Will react with certain metals with H_2 as a product
- B. Basic Characteristics → Ionic Compounds that contains OH-
 - 1. Bitter taste
 - 2. Slippery feeling
 - 3. Produces color changes with indicators
 - 4. Will neutralize an acid to form water
 - 5. Will form a precipitate (ppt) with certain cations
- D. Acid-Base reaction

 $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(I)$

- <u>E. Salts-</u> A salt is an ionic compound which is produced in an acid-base reaction. $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O$
 - Acid + Base \rightarrow Salt + H₂O

How to recognize:

A salt is an ionic compound that does not contain OH⁻ and is not a metal oxide

HCI(aq)	NaBr	Zn(C2H3O2)2
---------	------	-------------

 $Sn(OH)_2$ HClO(aq) HC₆H₆O₂(aq)

F. STRENGTH OF ACIDS AND BASES

Strong Acids - Those acids which are 100% ionized (reacted with water)

Weak Acids - Those acids which are less than 100% ionized (reacted with water)

Strong Bases - Those bases which are 100% dissociated in water

Weak Bases - Those bases which are less than 100% dissociated in water

STRONG BASES

LiOH	NaOH
КОН	RbOH
CsOH	Sr(OH) ₂
Ba(OH) ₂	Ca(OH) ₂

STRONG ACIDS

HNO3	H ₂ SO ₄
HCIO ₄	HCI
HBr	HI

Part 4: Concepts of Acids and Bases

I. ARRHENIUS CONCEPT

Arrhenius Acid \Rightarrow A substance that INCREASES the concentration of $\underline{H^+}$ in water ex.

Arrehenius base \Rightarrow A substance that INCREASES the concentration of \underline{OH}^{-} in water ex.

II. BRONSTED-LOWRY CONCEPT

A. DEFINITIONS

Bronsted Acid \Rightarrow A substance that can donate a proton (H⁺)

Monoprotic

Polyprotic

Bronsted Base \Rightarrow A substance that can accept a proton (H⁺)

An Acid-Base Reaction:

B. CONJUGATED ACID-BASE PAIRS

When a Bronsted-Lowry acid loses a proton, the species formed is a base:

The two species differ by the loss or gain of a proton. These pairs are called: **conjugated acid-base pairs.**

1. Identifying Bronsted Acid and Base Species

Acid $_1$ + Base $_2 \rightleftharpoons$ Base $_1$ + Acid $_2$

<u>2. Bronsted Amphiprotic substances</u> Substances which can act as a Brontsted acid <u>or</u> a Bronsted base 3. Strengths of Bronsted Acids and Bases

The strength of an acid is its tendency to donate a proton

The strength of a **base** is its tendency to **accept a proton**

Acid $_1$ + Base $_2 \rightleftharpoons$ Base $_1$ + Acid $_2$

$$HC_2H_3O_2 + H_2O \Rightarrow C_2H_3O_2^- + H_3O^+$$

RELATIVE STRENGTHS OF ACIDS AND BASES			
	ACID	BASE	
STRONGEST	HCIO ₄	CIO4-	WEAKEST
ACIDS	H ₂ SO ₄	HSO4	BASES
	HI HBr	I [−] Br-	
	HCI	CI	
	HNO ₃	NO3-	
	H ₃ 0+	H ₂ 0	
	HSO ₄	so ₄ -	
	H ₂ SO ₃	HSO3	
	H ₃ PO ₄	H ₂ PO ₄ ⁻	
	HNO ₂	NO2-	
	HF	F ⁻	
	HC ₂ H ₃ O ₂	C ₂ H ₃ O ₂ -	
	AI(H ₂ O) ₆ ³⁺	AI(H ₂ O) ₅ ²⁺	
	H ₂ CO ₃	HCO3	
	H ₂ S	HS ⁻	
	HCIO	CIO ⁻	
	HBrO	BrO ⁻	
	NH4+	NH ₃	
\downarrow	HCN	CN ⁻	\checkmark
	HCO ₃ -	со ₃ -2	
	H ₂ O ₂	HO2 ⁻	
WEAKEST	HS ⁻	\$2 ⁻	STRONGEST
ACIDS	H ₂ 0	OH -	BASES

The stronger acid will have the weaker conjugated base

The stronger base will have the weaker conjugated acid

The direction of the acid-base reaction always favors the weaker acid and base:

"The stronger acid plus the stronger base produces the weaker acid and weaker base"

III. Lewis Acid-Base Concept

A. DEFINITION

Lewis Acid \Rightarrow A substance that is an electron pair acceptor (A covalent bond is made) ex.

Lewis Base \Rightarrow A substance that is an electron pair donator (A covalent bond is made) ex.

An Acid-Base Reaction:

Part 5: Autoionization of Water

I. THE CONCEPT

Experiments have shown that a very small percentage of water will undergo the following ionization to produce ions:

$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

Experimentally, it was determined that the product between the molar concentrations of the hydronium ion and hydroxide ion is a constant:

 $[H_3O^+] \times [OH^-] = 10^{-14}$ \leftarrow ion product for water (constant)

or $[H^+] \times [OH^-] = 10^{-14}$ as an abbreviation

Therefore, in pure water, $[H_3O^+] = [OH^-] = 10^{-7}$

Problems:

- 1. What is the hydrogen (hydronium) ion concentration when $[OH^-] = 2 \times 10^{-3} M$?
- 2. What is the hydroxide ion concentration in a 0.002 M HCl solution?
- 3. What is the hydrogen ion concentration in a 1.00×10^{-2} M NaOH solution?

II. THE pH SCALE

Hydrogen ion concentrations, [H⁺] and hydroxide ion concentrations, [OH⁻] are usually very small numbers...

Example: $[H^+] = 2 \times 10^{-1}$ M and $[H^+] = 1 \times 10^{-11}$ M. The pH scale was developed to handle these very small numbers over a wide range. $(2 \times 10^{-1} \text{ is } 20 \text{ trillion} \text{ times larger than } 1 \times 10^{-11}!)$

```
pH = -log [H<sub>3</sub>O<sup>+</sup>]
and pOH = -log [OH<sup>-</sup>]
```

Problems:

- 1. What is the pH when $[H^+] = 10^{-3}M?$
- 2. What is the what is the pH of a 0.002 M HCl solution?
- 3. What is the pH of a 1.00×10^{-2} M NaOH solution?
- 4. What is the $[H^+]$ if the pH = 2.56
- 5. What is the [H⁺] of a NaOH solution with a pOH of 9.983?

Acidic, Basic, and Neutral solutions:

[H3O+]	[OH-]	рН	acidic/basic or/neutral
10 ⁰	10 ⁻¹⁴	0	
10 ⁻¹	10 ⁻¹³	1	
10 ⁻²	10 ⁻¹²	2	
10 ⁻³	10 ⁻¹¹	3	
10 ⁻⁴	10 ⁻¹⁰	4	
10 ⁻⁵	10 ⁻⁹	5	
10 ⁻⁶	10 ⁻⁸	6	
10 ⁻⁷	10 ⁻⁷	7	
10 ⁻⁸	10 ⁻⁶	8	
10 ⁻⁹	10 ⁻⁵	9	
10 ⁻¹⁰	10 ⁻⁴	10	
10 ⁻¹¹	10 ⁻³	11	
10 ⁻¹²	10 ⁻²	12	
10 ⁻¹³	10 ⁻¹	13	
10 ⁻¹⁴	10 ⁻⁰	14	

Problem: Is 2 x 10^{-10} M [H⁺] a basic, acidic or neutral solution?

III. INDICATORS

Indicators are often used to determine the approximate pH of solutions. Indicators are weak acids or weak bases whose conjugated species is a different color than it is:

Part 6: Acid - Base Equilibria

```
I. WEAK ACID IONIZATION

<u>A. Equilibria of a weak acid.</u>

HA (aq) + H<sub>2</sub>O \Rightarrow H<sub>3</sub>O<sup>+</sup>(aq) + A<sup>-</sup> (aq)

Or

HA (aq) \Rightarrow H<sup>+</sup>(aq) + A<sup>-</sup> (aq)

ex.
```

B. Acid Ionization constant, Ka

<u>C. PKa = $-\log K_a$ </u>

D. Degree of lonization, α

The degree of ionization, α , of a weak acid or base in water is the fraction of the total concentration that has formed ions:

A 0.10 M HA solution undergoes equilibrium (Ionization)

 $HA (aq) + H_2O \Rightarrow H_3O^+(aq) + A^- (aq)$

ACID-IONIZATION CONSTANTS AT 25°C*

Substance	Formula	Ка
Acetic acid	HC ₂ H ₃ O ₂	1.7 X 10 ⁻⁵
Benzoic acid	HC7H5O5	6.3 X 10 ⁻⁵
Boric acid	H ₃ BO ₃	Ka ₁ 5.9 X 10 ⁻¹⁰
Carbonic acid	H ₂ CO ₃	Ka ₁ = 4.3 X 10 ⁻⁷
	HCO3-	Ka ₂ = 4.8 X 10 ⁻¹¹
Cyanic acid	HOCN	3.5 X 10 ⁻⁴
Formic acid	нсно ₂	1.7 X 10 ⁻⁴
Hydrocyanic acid	HCN	4.9 X 10 ⁻¹⁰
Hydrofluoric acid	HF	6.8 X 10 ⁻⁴
Hydrogen sulfate ion	HSO4-	1.1 X 10 ⁻²
Hydrogen sulfide	H ₂ S	Ka ₁ = 8.9 X 10 ⁻⁸
	HS	Ka ₂ = 1.2 X 10 ⁻¹³ †
Hypochlorous acid	HCIO	3.5 X 10 ⁻⁸
Nitrous acid	HNO ₂	4.5 X 10 ⁻⁴
Oxalic acid	H ₂ C ₂ O ₄	Ka ₁ = 5.6 X 10 ⁻²
	HC204-	Ka ₂ = 5.1 X 10 ⁻⁵
Phosphoric acid	H ₃ PO ₄	Ka ₁ = 6.9 X 10 ⁻³
	H ₂ PO ₄ -	Ka ₂ = 6.2 X 10 ⁻⁸
	HPO4 ²⁻	Ka ₃ = 4.8 X 10 ⁻¹³
Phosphorous acid	H ₃ PO ₃	Ka ₁ = 1.6 X 10 ⁻²
	H ₂ PO ₃ -	Ka ₂ = 7 X 10 ⁻⁷
Propionoic acid	HC ₃ H ₅ O ₂	1.3 X 10 ⁻⁵
Pyruvic acid	HC3H3O3	1.4 X 10 ⁻⁴
Sulfurous acid	H ₂ SO ₃	Ka ₁ = 1.3 X 10 ⁻²
	HSO3-	Ka ₂ = 6.3 X 10 ⁻⁸

*The ionization constants for polyprotic acids are for successive ionizations. Thus, for H₃PO ₄, the equilibrium is H₃PO ₄ \Rightarrow H⁺ + H₂PO₄-. For H₂PO₄⁻, the equilibrium is H₂PO₄- \Rightarrow H⁺ + HPO₄²-.

[†]This value is in doubt. Some evidence suggests that it is about 10^{-19} .

F. ACID EQUILIBRIUM CALCULATIONS:

<u>1. Calculation of equilibrium concentrations from Ka</u> Calculate the pH of a 1.0 M Acetic acid solution, using approimations. $Ka = 1.8 \times 10^{-5}$

 $HC_2H_3O_2 + H_2O \rightleftharpoons H_3O^+ + C_2H_3O_2^-$

Initial

Change

at Equilibrium

2. Calculation of species concentrations from Ka, using the quadratic formula

Calculate the pH of a 0.000010 M Acetic acid solution

 $HC_2H_3O_2 + H_2O \Rightarrow H_3O^+ + C_2H_3O_2^-$

Initial

Change

at Equilibrium

3. Calculation of Ka from the pH of a weak acid solution Calculate the Ka of HNO₂ if a 0.10 M HNO₂ solution has a pH of 2.187

Initial Change ______ at Equilibrium

 $\begin{array}{c} \mbox{4. Calculation of Ka from the percent ionization.} \\ \mbox{Calculate the Ka of Glycine if a 0.10 M Glycine solution is 4.1 x 10⁻³ ionized} \\ \mbox{HGly} + \mbox{H2O} \eqpi H_3 \mbox{O}^+ + \mbox{Gly}^- \\ \mbox{Initial} \\ \mbox{Change} \end{array}$

AT EQUILIBRIUM

II. WEAK BASE IONIZATION

A. Equilibria of a weak base. B (aq) H₂O (I) \Rightarrow BH⁺(aq) + OH⁻ (aq) ex.

- B. Types of weak bases
 - 1. Insoluble
 - 2. Soluble Molecular-Nitrogen based Bases

C. Base Ionization constant, Kb

D. Ammonia Equilibrium

F. Degree of lonization, α

The degree of ionization, $\underline{\alpha}$, of a weak acid or base in water is the fraction of the total concentration that has formed ions: A 1.0 M B solution undergoes equilibrium (lonization)

 $B(aq) + H_2O \Rightarrow HB^+(aq) + OH^-(aq)$

Kb table DISSOCIATION CONSTANTS FOR BASES

		Dissocaiation
Base	Formula	Constants at 25°C
Ammonia	NH ₃	1.76 X 10 ⁻⁵
Anniline	C ₆ H ₅ NH ₂	3.94 X 10 ⁻¹⁰
1-Butylamine	CH ₃ (CH ₂) ₂ CH ₂ NH ₂	4.0 X 10 ⁻⁴
Dimethylamine	(CH ₃) ₂ NH	5.9 X 10 ⁻⁴
Ethanolamine	HOC ₂ H ₄ NH ₂	3.18 X 10 ⁻⁵
Ethylamine	CH ₃ CH ₂ NH ₂	4.28 X 10 ⁻⁴
Ethylenediamine	NH ₂ C ₂ H ₄ NH ₂	K = 8.5 X 10 ⁻⁵
		K = 7.1 X 10 ⁻⁸
Hydrazine	H ₂ NNH ₂	1.3 X 10 ⁻⁶
Hydroxlamine	HONH ₂	1.07 x 10 -8
Methylamine	CH ₃ NH ₂	4.8 X 10 ⁻⁴
Piperidine	C ₅ H ₁₁ N	1.3 X 10 ⁻³
Pyridine	C ₅ H ₅ N	1.7 X 10 ⁻⁹
Trimethyl amine	(CH ₃) ₃ N	6.25 X 10 ⁻⁵

G. Base Equilibrium Calculations:

1. Calculation of species concentrations from KbCalculate the pH of a 0.100 M NH3 solutionKb = 1.8×10^{-5}

Initial

Change at Equilibrium 2. Calculation of Kb from species concentrations

Calculate the Kb for methylamine, CH_3NH_2 , if the pOH of a0.0100 M CH₃NH₂ solution is 7.66

Initial

Change at Equilibrium

3. Calculation of species concentrations from Kb Calculate the pH of a 0.100 M C_5H_5N Kb = 1.3 x 10⁻³

Initial

Change at Equilibrium

III. THE EFFECT OF DILUTION ON THE % IONIZATION

The percent ionization of a weak acid or base increase as the acid/base concentration decreases (dilution)

1. Calculate the percent ionization for 0.10 M HF

2. Calculate the percent ionization for 0.00010 M HF Equilibrium problems