CHEMISTRY 111 LECTURE EXAM V Material

Part 1 Acid - Base Equilibria, continued

Chapter 15

(Page 685-699)

I. <u>The Acid-Base Properties of Ions and Salts</u>

<u>- Hydrolysis</u>

Hydrolysis is the reaction of an ion with water to produce either H_3O^+ (and a weak base) or OH^- (and a weak acid).

Anions derived from weak acids form basic solutions Examples:

C2H3O2

NO2-

Cations derived from weak bases form acidic solutions

Examples:

 $NH4^+$

Fe³⁺

- A. Salts that undergo Hydrolysis:
 - 1. <u>Salt of a Strong Base and Weak Acid</u> will produce basic solutions:

Examples: KC₂H₃O₂

NaCN

2 Salt of a Strong Acid and Weak Base will produce acidic solutions

Examples NH₄Cl

Hydroysis of metal lons AlCl₃

FeCl₃

- 3 Salt of a Weak Acid and Weak Base NH₄C₂H₃O₂
- 4. <u>Salt of a **Strong acid** and a **Strong base** NaCl</u>

B. Problems

1. Salt of a Strong Base and Weak Acid Calculate the pH of 0.10 M KC₂H₃O₂. Ka for HC₂H₃O₂ = 1.8×10^{-5} Calculation of Kb

C ₂ H ₃ O ₂	+	H_2O	⇒
02302			•

Initial Change at Equilibrium 2 <u>Salt of a Strong Acid and Weak Base</u> Calculate the pH of 0.10M NH₄Cl. Kb for NH₃ = 1.8×10^{-5} <u>Calculation of Ka</u>

 NH_4 ⁺ + $H_2O \rightleftharpoons$

Initial Change at Equilibrium

3 Salt of a Weak Acid and Weak Base

a. NH₄CN Ka for HCN = 4.0×10^{-10} Kb for NH₃ = 1.8×10^{-5}

b. Al₂(SO₃)₃ Ka for Al³⁺ = 1.4 x 10⁻⁵ Ka₂ for HSO₃⁻ = 5.6 x 10⁻⁸

4. Salt of a Strong acid and a Strong base

5. a. Calculate the pH of a solution of 0.10 M NaNO2. Ka for HNO2 = 4.5×10^{-4}

Initial Change______at Equilibrium

b. Calculate the percent hydrolysis.

6.	Calculat	e the pH of a	solution i	f 25.0 mL	of .2	20 M N	VaOH is	added	to 5	50.0	mL	of.10	M
	HNO ₂ .	Ka for HNO ₂	= 4.5 x 1	0 ⁻⁴									

<u>1st Reaction:</u> Reaction Eqn:		
Before		
Change		
At after rxn		

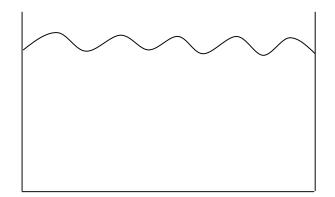
2nd Equilibrium:

Equilibrium Eqn:		
Initial		
Change		
at Equilibrium		

7. Calculate the pH of a solution of 0.20 M Na ₂ S.	Ka ₂ for HS ⁻ = 1.0 x 10 ⁻¹⁴
--	---

Initial		
Change		
at Equilibrium		

II. POLYPROTIC ACIDS


Polyprotic acids are acids which have more than one acidic hydrogen. Polyprotic acids ionize in a stepwise manner. Each step will have a Ka. Examples:

Ionization of phosphoric acid

 $H_{3}PO_{4} + H_{2}O \rightleftharpoons H_{3}O^{+} + H_{2}PO_{4}^{-} Ka_{1} = 7.5 \times 10^{-3}$ $H_{2}PO_{4}^{-} + H_{2}O \rightleftharpoons H_{3}O^{+} + HPO_{4}^{-2} Ka_{2} = 6.2 \times 10^{-8}$ $HPO_{4}^{-2} + H_{2}O \rightleftharpoons H_{3}O^{+} + PO_{4}^{-3} Ka_{3} = 1.0 \times 10^{-12}$

Since $Ka_1 > Ka_2 > Ka_3 \implies H_3PO_4 > H_2PO_4 > HPO_4^{-2}$ Acid Strength

Consider a phosphoric acid solution:

Problems:

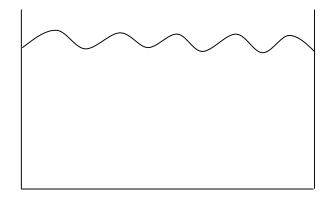
- 1. Calculate the $[H_3O^+]$ and $[H_3PO_4]$ in a 0.10 M solution of phosphoric acid: The principal source of $[H_3O^+]$ is the first ionization of H_3PO_4 . The H_3O^+ produced by the 2nd and 3rd ionizations is negligible.
 - a. Ionization of H₃PO₄

2. Suppose that we wish the sulfide ion concentration to be 8.4 x 10^{-15} M in a saturated (0.10 M) solution of H₂S. What hydrogen ion concentration must be maintained by a buffer to give this S²⁻ concentration?

H ₂ S	+ H ₂ O	≑	H ₃ O+ +	HS	Ka ₁ = 1.1 x 10 ⁻⁷
HS -	⊦ H ₂ O	≑	H ₃ O+ +	s ⁻²	Ka ₂ = 1.0 x 10 ⁻¹⁴

Caution!! The above condensed method can be used only when two of the three equilibrium concentrations are given and we wish to calculate the third.

Part 2 Aqueous Ionic Equilibrium


Chapter 16

I. <u>Buffers: Solutions That Resist pH Change</u>

Buffers are solutions which resist a change in pH when small amounts of H_3O^+ or OH^- is added or dilution occurs.

The buffering effect occurs because of the reaction of certain species with the H₃O⁺ and OH⁻

Consider a mixture of $HC_2H_3O_2$ + NaC₂H₃O₂

A. Buffering systems:

- 1. A Weak acid with its salt (a salt that contains the conjugated base of the weak
- acid)

Example: HCIO and NaCIO

2. A Weak base with its salt (a salt that contains the conjugated acid of the weak base) Example: NH_3 and NH_4Cl

- 3. Acid Salts Example: NaHCO₃
- 4. A Salt of a weak acid & weak base Example: NH4C2H3O2

II. COMMON ION

A. The Effect of Adding a Common Ion to a Weak Acid/Base Equilibrium

The common-ion effect occurs when an ion that is in a weak acid/base equilibria is added to a equilibrium system.

Consider: $HC_2H_3O_2 + H_2O \Rightarrow H_3O^+ + C_2H_3O_2^-$

If acetate ion, $C_2H_3O_2^-$, is added, according to Le Chantlier's principle there will be a net reaction to the left until equilibrium is reestablished.

If HCl is added, according to Le Chantlier's principle there will be a net reaction to the left until equilibrium is reestablished.

Problems:

A 0.10 M acetic acid solution after adding enough NaC₂H₃O₂ to make the solution 0.15 M NaC₂H₃O₂

 $HC_2H_3O_2 + H_2O \Rightarrow H_3O^+ + C_2H_3O_2^-$

TYPE 1 Calculation:

```
Equilibrium: HC_2H_3O_2 + H_2O \Rightarrow H_3O^+ + C_2H_3O_2^-
Initial
Change______
at Equilibrium
```

TYPE 2 Calculation:

Henderson - Hasselbalch equation:Derivation: $Ka = \frac{[H^+][A^-]}{[HA]}$ log Ka = $log \frac{[H^+][A^-]}{[HA]}$ log Ka = $log [H^+] + log \frac{[A^-]}{[HA]}$ - $log [H^+] = -log Ka + log \frac{[A^-]}{[HA]}$ h pHh pKa

Therefore:	рн	=	pKa + log	[A ⁻] [HA]
1. Calculate the pH fo $k_b = 1.8 \times 10^{-5}$	r a solution	that cor	ntains 0.015 M	NH ₃ (aq) and 0.0050 M NH ₄ Cl?
Initial				
Change				

at Equilibrium

2. Addition of an ion that is not common but does react. 100.0 mL of 0.2500 M NaOH is added to 250.0 mL of .3500 M HClO₂ $K_a = 1.1 \times 10^{-2}$

1st Reaction:

Reaction Eqn:

Before

Change

At after rxn

2nd Equilibrium:

Equilibrium Eqn:		
Initial		
Change		
at Equilibrium		

3. How many moles of NH₄Cl must be added to 1 - Liter of a 0.10 M solution of NH₃(aq) to adjust the pH to 9.000. $K_b = 1.8 \times 10^{-5}$

$$NH3 + H_2O \Rightarrow NH4^+ + OH^-$$

Initial

Change

at Equilibrium

4. What is the pH of a solution made by mixing 100. mL of 0.15 M HCl and 200. mL of 0.20 M aniline $(C_6H_5NH_2)$? Assume that the final volume of the buffer solution is 300. mL . $K_b = 4.6 \times 10^{-10}$

<u>1st Reaction:</u> Reaction Eqn:	
Before	
Change	
At after rxn	

2^{nd}	Eq	ui	lib	riu	ım:
_					

Equilibrium Eqn:		
Initial		
Change		
at Equilibrium		

5. A Strong acid is added to a salt to form a Buffer Solution

a. How many moles of a strong monoprotic acid must be added to 1-L of a 0.40 M sodium formate, NaCO₂H, solution to prepare a buffer of a pH = 4.35. $K_a = 1.77 \times 10^{-4}$

<u>1st Reaction:</u> Reaction Eqn:		
Before		
Change		
At after rxn		

2nd Equilibrium:

Equilibrium Eqn:		
Initial		
Change		
at Equilibrium		

V. Titration Curves

A. A Weak Acid is titrated with a strong base

B. Four Regions

1.

2.

3.

4.

50.0 mls of 0.10M HAc is titrated with 0.10 M NaOH

RXN: HAc + NaOH \rightarrow NaAc + H₂O

NOTE: For a weak acid-strong base titration the $pH \neq 7$ at the endpoint !

<u>Region 1 = Before addition of base - WEAK ACID</u> 0.00 mL of NaOH added

pH calculation

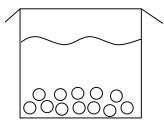
<u>Region 2</u> = <u>Buffer Region</u> {BEFORE THE EQUIVALENCE POINT}- <u>WEAK ACID</u> 25.00 mL of NaOH added

<u>pH calculation</u>

Method 1

Method 2

<u>Region 3 = THE EQUIVALENCE POINT- HYDROLYSIS OF A SALT</u> 50.00 mL of NaOH added


pH calculation

<u>Region 4 = AFTER THE EQUIVALENCE POINT- EXCESS BASE (NaOH)</u> 75.00 mL of NaOH added

pH calculation

PART 2: SOLUBILITY EQUILIBRIA

In an closed system a solid obtains a dynamic equilibrium with its dissolved state

Dynamic equilibrium: rate of dissolving = rate of crystallization (ppt)

If an "insoluble" or "slightly soluble" material is placed in water, an equilibrium is established when the rate of dissolution of ions from the solid equals the rate of precipitation of ions from the *saturated solution*.

A. Equilibria

AgCl (s) \Rightarrow Ag⁺(aq) + Cl⁻ (aq)

B. Solubility Product constant, Ksp

1. Ksp of $Fe(OH)_3 = 4.0 \times 10^{-38}$ & Ksp of $AI(OH)_3 = 1.6 \times 10^{-32}$

- Solubility, s (as Molar solubility)
 a. AgCl
 - b. Ag_2S
- 2. Solutilbity Limit

C. Problems

1. At 25°C 0.00188 g of AgCl dissolves in one liter of water. What is the Ksp of AgCl?

2. Calculate the solubility of AglO₃ Ksp of AglO₃ = 3.0×10^{-8}

3. Calculate the solubility of HgBr₂ Ksp of HgBr₂ = 1.3×10^{-19}

4. Calculate the Ksp for silver chromate if $\mathbf{s} = 6.5 \times 10^{-5} \text{M}$

5. How many grams of Ba(IO₃)₂ will dissolve in 750.0 mls of DI H₂O Ksp of Ba(IO₃)₂ = 1.57 x 10⁻⁹

D. Common Ion Effect on Solubility
 Solid is dissolved in a solution containing one of the ions that compose the salt
 1. Calculate the solubility of AgCl in 0.1000 M NaCl

2. Calculate the solubility of $AI(OH)_3$ at pH = 3.00

3. Calculate the solubility of ZnS in a saturated H_2S solution (0.10 M) at a pH = 6.00

E. Selective Separation

Separation of ions must lead to minimum contamination of each other.

1. Mg²⁺ and Fe³⁺ must be separated. [Mg²⁺] = 0.100 M and [Fe³⁺] = 0.100 M a. K_{sp} Equations

b. Fe³⁺ calculation

c. Mg^{2+} calculations