CHEMISTRY 111 LECTURE
 EXAM I Material
 REVIEW

Part $1 \mathbb{N O M E M C M} \mathbb{A} \mathbb{R} \mathbb{R}$
I. COMPOUNDS- Two or more elements chemically combined in definite proportions. COMPOUNDS

IONIC COMPOUNDS

Metal - Nonmetal

MOLECULAR COMPOUNDS
Nonmetal-Nonmetal

II Naming Ionic Compounds

 BACKGROUND :A. Metallic Cations - (+ charge) 1. Fixed Charged cations
2. Variable charged cations
B. Nonmetal Anions (-) charge
C. Polyatomic Ions

Naming compounds

Key: Compounds are neutral \cdots no net charge

III Naming Molecular compounds

Nonmetal - Nonmetal
Variable combinations

Ex.

1. Know prefixes: Di, tri, tetra...etc
2. Naming formula: Prefix element \#1 + prefix stem of element \#2 + ide
Ex.

IV ACIDS AND BASES

Formula starts with a "H" + (aq)
[$\mathrm{H}_{2} \mathrm{O}$ is excluded]
Ex. $\mathrm{HCl}(\mathrm{aq})$ "Dissolved in water" The HCl must be in $\mathrm{H}_{2} \mathrm{O}$ to have the properties of an acid.

$\frac{\text { A. Binary Acids }}{\text { Naming: Hydro }+ \text { stem of element }+ \text { ic Acid }}$
Ex.

Exception: $\mathrm{H}_{2} \mathrm{~S} \xrightarrow{\cdots}$
B. OXYACIDS/TERNARY ACIDS (contains "O")

Naming Formula:
$\begin{array}{ll}\text { Ion name } \quad \underline{B}_{\underline{t}} \text { Change } \quad \text { ite } \cdots \text { ous } \quad+\quad \text { Acid } \\ & \text { Ate } \cdots \text { ic }\end{array}$
臓: Recognize the ion part of the Acid
ACID
ION

EXCEPTION:

PRACTICE:

Name or give the chemical formula for the following:.

oxalic acid	magnesium hydrogen carbonate
mercurous nitride	ammonium carbonate
silver nitrate	aurous iodide
plumbic acetate	iodine tribromide
calcium peroxide	hydrobromic acid
potassium phosphide	sulfurous acid
nickelous permangante	cobaltous sulfide
CS_{2}	$\mathrm{Co}_{2} \mathrm{O}_{3}$
$\mathrm{Ni}\left(\mathrm{NO}_{2}\right) 2$	$\mathrm{Bi}\left(\mathrm{NO}_{3}\right) 3$
$\mathrm{Ba}_{3} \mathrm{~N}_{2}$	$\mathrm{HClO}_{3}(\mathrm{aq})$
$\mathrm{Ca}(\mathrm{OH}) 2$	$\mathrm{N}_{2} \mathrm{O}_{5}$

```
Sr(HSO3)2 Hg(HCO}3)
```

$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	PbO 2
SO_{3}	
HF	
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$	
$\mathrm{HBrO}_{2}(\mathrm{aq})$	
$\mathrm{N}_{2} \mathrm{O}_{3}$	
$\mathrm{HCN}(\mathrm{aq})$	

I. THE MOLE

```
1 mole = 6.02 % 1023 Particles
Avogadro's number }->->\mathrm{ memorize!!
```

Conversions
$\frac{1 \text { mole } \mathrm{H} \text { atoms }}{6.02 \times 10^{23} \text { atoms }}$
or $\frac{6.02 \times 10^{23} \mathrm{H} \text { atoms }}{1 \text { mole atoms }}$
II. MOLAR MASS (molecular wt.)

1 mole $=$ AMU weight numerically in grams

26
Fe
55.85
Atomic wt.
Molar mass
55.85 AMU
55.85 g
\{1 atom \}
$=1$ mole of Fe atoms
$=6.02 \times 10^{23} \mathrm{Fe}$ atoms
IV. MOLES AND CHEMICAL FORMULAS

$$
\mathrm{N}_{2} \mathrm{O}_{5}
$$

2 atoms N	2 mole N
5 atoms O	$\frac{5 \text { moles O }}{=1 \text { mole of } \mathrm{N}_{2} \mathrm{O}_{5}}$

Ratios:

Problem:
How many moles of N in 13.5 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$?

V MOLES AND CHEMICAL CALCULATIONS:

1. How many grams of Zn will combine with 34.00 g of nitrogen?
2. How many atoms of 0 are needed to produce 32 kg of phosphoric acid?

VI Empirical and Molecular Formulas:

A. Empirical formula shows the smallest ratio of atoms in a compound. Examples:

B. Calculation of Empirical and Molecular Formula

The percentage composition of a compound is $63.133 \% \mathrm{C}, 8.831 \% \mathrm{H}$, and $28.04 \% \mathrm{O}$. The Molar mass $=171.21 \mathrm{~g} / \mathrm{mol}$
What is its empirical formula? What is its molecular formula?
STEP 1. Calculate the Empirical Formula

STEP. 2 Calculate the Empirical Formula weight.

STEP. 3 Determine the number of E.F. units in the molecular formula \{ Divide the molar mass by the E.F. wt.\}

A chemical reaction occurs when there is a change in chemical composition.
I. Evidence of a reaction- One of the following would be observed:
a. A precipitate is formed or dissolved
b. A change of color
c. Effervescence occurs (gas formation)
d. Energy in the form of heat, light, or electricity is released II Types of Chemical Reactions--> Know and complete A. Combination Reactions - One product is formed:

1. Metal + Nonmetal combines to form an Ionic compound
2. Metal Oxide $+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { combines to form }}$ a Base
3. Nonmetal Oxide $+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { combines to form }}$ an Acid
B. Decomposition-A single reactant will form two or more products
4. Carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ decomposes to oxides and $\mathrm{CO}_{2}(\mathrm{~g})$
5. Sulfites $\left(\mathrm{SO}_{3}{ }^{2-}\right) \xrightarrow{\text { decomposes }}$ to oxides and sulfur dioxide gas
6. Metal oxides decomposes to metal + Oxygen gas
7. Ionic Compounds decomposes to Metal + Nonmetal
8. Hydroxides decomposes to Metal oxides + water
9. Nitrates decomposes to Nitrites + Oxygen gas
10. Peroxides $\xrightarrow{\text { decomposes }}$ to Oxides + Oxygen gas
11. Chlorates decomposes to chlorides + Oxygen gas

Page 7
C. Combustion Reactions involves organic compounds:

General Form: $\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}\right)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. Single displacement Reactions/ Replacement Rxns. A more active element displaces a less active element TYPES:

Type 1: Metal $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ Base $+\mathrm{H}_{2}(\mathrm{~g})$

Type 2: Metal + Acid \rightarrow Salt $+\mathrm{H}_{2}(\mathrm{~g})$

Type 3: Metal $_{1}+$ Salt $_{1} \rightarrow$ Metal $_{2}+$ Salt $_{2}$

Type 4. Nonmetal ${ }_{1}+$ Salt $_{1} \rightarrow$ Nonmetal $_{2}+$ Salt $_{2}$

SOLUBILITY RULES FOR IONIC COMPOUNDS

Ion contained in the Compound	Solubility	Exceptions
Group IA	Soluble	
$\mathrm{NH}_{4}{ }^{+}$	Soluble	
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	Soluble	
$\mathrm{NO}_{3}{ }^{-}$	Soluble	
$\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}	Soluble	$\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$
$\mathrm{SO}_{4}{ }^{2-}$	Soluble	$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$
$\mathrm{CO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{CrO}_{4}{ }^{2-}$	insoluble	group IA and $\mathrm{NH}_{4}{ }^{+}$
s^{2-}	insoluble	group IA, IIA, and $\mathrm{NH}_{4}{ }^{+}$
OH^{-}	insoluble	group IA, Ca^{2+}, $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$

STRONG	
LiOH	BASES
KOH	CrOH
RbOH	$\mathrm{OH})_{2}$
NaOH	$\mathrm{Ba}(\mathrm{OH})_{2}$
	$\mathrm{Ca}(\mathrm{OH})_{2}$

STRONG	
HNO_{3}	ACIDS
HClO_{4}	HBr
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HI

E. Double Exchange (Ion Exchange) Reactions

1. In a double displacement (ion exchange) reaction, the positive end and negative end of compounds "change partners" to form new products:
a. Precipitate
*Note: A ppt must form for the rxn to occur. (if it doesn't...Then NR!)
b. Less Ionized Substance.(Molecule formation)
(1) Gas
(2) Neutralization
(3) A weak acid or base is formed

Part \mathbb{A} STOTCHTOMETHM: CREMTCAL REACTION CATCUATHONS:

The numerical relationship among the reactants and products in a balanced equation (Chemical reaction)

The Balanced equation
A balanced equation shows a chemical reaction in shorthand:
For example: Two magnesium atoms (a solid) when ignited, reacts with oxygen atoms to form solid magnesium oxide

The meaning of a balanced Chemical Equation: A bookkeeping system
The balanced equation - mole to mole ratios
These mole to mole ratios are exact numbers.
II. The Stoichiometric Pathway:
\# of particles of Known
\# particles of Unknown.

balanced equation

Unknown.

III. Stoiciometric Calculations

1. The reaction: Chromium metal is reacted with copper (II) chloride Key: You must have a balanced equation!!

How many grams of chromic chloride reacts with 6.0 mole Cr?
2. How many grams of oxygen gas are required for the complete combustion of 694 g of methane $\mathrm{CH}_{4}(\mathrm{~g})$ in a sample of natural gas?

IV. LIMITING REACTANTS

When most reactions are performed, some of the reactants is usually present in excess of the amount needed. If the reaction goes to completion, then some of this excess reactant will be left-over. The limiting reactant is the reactant used-up completely and it "limits" the reaction. For example:

PROBLEMS :

1. Zinc nitrate is reacted with sodium hydroxide.
a. How many grams of zinc hydroxiode is produced when 13.0 grams of zinc nitrate and 17.0 grams sodium hydroxide are mixed? How much excess reactant is left?

METHOD: Find the L.R. \rightarrow Calculate the moles of product that each reactant may produce.

BALANCED EQUATION:
(1) Find the L.R.
(3.) Determine the MASS of product made from the L.R.
(4.) Calculate the grams of excess reactant
VI. PERCENT YIELD

The amount of product that has been previously calculated from chemical equations show the maximum
yield (100\%). However, many reactions fail to give a 100% yield of product.
The theoretical yield is the calculated amount of product.
The Actual yield is the amount of product actually obtained

$$
\text { Percent Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \quad \text { X } 100
$$

```
PROBLEM:
    5.000 g of \(\mathrm{Ag}_{2} \mathrm{~S}\) was produced from 5.000 g of Ag and an excess of sulfur according to
    the reaction:
            \(2 \mathrm{Ag}+\mathrm{S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}\)
    What is the percent yield?
```


Stoichiometry Problems

1) A mixture consists of $22.0 \% \mathrm{Cu}(\mathrm{NO} 3) 2$ and $78.0 \% \mathrm{Fe}(\mathrm{NO} 3) 3$ by mass. What is the total number of nitrate ions in 25.00 g of mixture?
2) A certain alloy of Au, Cu, and Ni contains these elements in the atomic proportions mass, in grams, of this alloy containing a total of 1.00×1024 atoms?

3: 2: 1 , respectively. What is the
3) A carbon containing compound is treated chemically to convert all its carbon into $\mathrm{CaC}_{2} \mathrm{O}_{4}$ (s). A 17.88 g sample of the compound gave $15.04 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4}$.
a) What is the percent of carbon in the compound?
b) Calculate the molar mass of the compound, if there are 7 carbon atoms in each molecule of the compound. (Molar mass : $\mathrm{CaC}_{2} \mathrm{O}_{4}=128.08 \mathrm{~g} / \mathrm{mole}$).
4) By analysis, a compound with the formula, $\mathrm{AsH}_{3} \mathrm{O}_{\mathrm{x}}$, is found to contain 52.78% by mass arsenic. What is the value of the integer, x ?
5) A certain compound contains only lead, carbon and hydrogen. if it contains 64.07% lead by mass, and if there are two carbon atoms present for every five hydrogen atoms, what is the empirical formula?
6) Suppose that 50.32 g of a metal nitride, $\mathrm{M}_{3} \mathrm{~N}_{5}$, reacts with H_{2} to produce the metal, M , and $9.550 \mathrm{~g} \mathrm{NH}_{3}$ only.
a) Write a balanced equation for the reaction.
b) Calculate the molar mass of the metal, M.
7) A compound contains 42.85% chlorine. If it is found that each molecule of the compound contains four atoms of chlorine, what is the molar mass of the compound?
8) Treatment of 10.00 g of XCl_{2} with excess chlorine forms $12.55 \mathrm{~g} \mathrm{XCl}_{4}$. Calculate the molar mass of the element, X .
9) A sample of a mixture of H 2 S and CS 2 is burned in oxygen. The equations for the reactions are:
$2 \mathrm{H} 2 \mathrm{~S}+3 \mathrm{O} 22 \mathrm{H} 2 \mathrm{O}+2 \mathrm{SO} 2$
$\mathrm{CS} 2+3 \mathrm{O} 2 \mathrm{CO} 2+2 \mathrm{SO} 2$
7.32 g of SO 2 , and 0.577 g of CO 2 are produced along with some H 2 O .
a) What percentage, by mass, of the original sample is H2S?
b) What is the percent CS2 in the mixture?
10) A 7.221 g sample of a compound containing only C, H, and S is burned completely in oxygen. The products are CO 2 , H 2 O and SO 2 . If the mass of CO 2 is 6.601 g and that of H 2 O is 5.406 g :
a) Calculate the mass of SO 2 produced.
b) What is the empirical formula of the compound?
c) Balance the equation for the above reaction.

Chapter 5 (pages 178-216)

I. Properties of gases
II. Measurements-Review
A. Pressure =

1. Conversions:

- 1 atm $=760 \mathrm{~mm} \mathrm{Hg}=760$ torr (exactly)
$1.013 \times 10^{5} \mathrm{~Pa}=1 \mathrm{~atm}=14.68 \mathrm{psi}$

2. Barometer
3. Manometer
B. Temperature - Kelvin
$\mathrm{K}={ }^{\circ} \mathrm{C}+273$
C. Volume
4. The volume of a gas is the volume of the container it occupies.
5. Units: liters or milliliters
III. RELATIONSHIP BETWEEN ${ }^{\text {OT, VOLUME, AND PRESSURE.-Review }}$

A. Boyle's law \quad \& \& V

As the pressure increases the volume decreases in the same proportion.

B Charles's law ${ }^{\circ} \mathrm{T}$ \& V
As the temperature (Kelvin) is increased the volume is increased proportionally.

C Gay-Lussac's Law
When temperature (K) increases pressure increases proportionally.

D Avogadro's Law: Volume and Amount (in moles, n)
When the amount (moles,n) increases volumne increases proportionally.
E. COMBINATION OF THE GAS LAWS-Review:
P, V, and ${ }^{\mathrm{O}} \mathrm{T}$ varying. Assume that the mass is constant.
Prob: A certain mass of gas occupies 5.50 L at $34^{\circ} \mathrm{C}$ and 655 mm Hg . What will its volume in liters be if it is cooled to $10.0^{\circ} \mathrm{C}$ and its pressure remains the same.

E. GAY-LUSSAC'S LAW OF COMBINING VOLUMES-Review:

At the same ${ }^{\mathrm{O}} \mathrm{T}$ and Pressure, the volumes of gases that combine in a chemical reaction are in the ratio of small whole numbers.
F. IDEAL GAS EQUATION-Review:

Derivation:
know: $\mathrm{PV}=\mathrm{nRT}$

$$
\begin{aligned}
& \text { Where: } \\
& \qquad \begin{array}{l}
\mathrm{n}=\text { moles of gas } \\
\mathrm{R}=\frac{0.0821 \mathrm{~L}-\mathrm{atm}}{\text { mole-K }}
\end{array}
\end{aligned}
$$

1. What volume in liters will be occupied by 6.00 mol carbon dioxide gas at 105 mm Hg and $28^{\circ} \mathrm{C}$?

G MOLAR VOLUME at Standard Temperature and Pressure-Review:
At the same temperature and pressure the same number of moles of different gases have the same volume. The Molar Volume is the volume of one mole of any gas at a given ${ }^{\circ} \mathrm{T}$ \& P. [STP] Standard Temperature and Pressure $=[S T P]$:

At: 273 K and 1 atm (760 torr)

The density of an unknown gas is $1.43 \mathrm{~g} / \mathrm{L}$ at $0^{\circ} \mathrm{C}$ and 760 torr. What is the molar mass of the unknown gas?

WHEN TO USE:

1. $P V=n R T$
2. at STP
3. $\underline{P}_{1} \underline{V}_{1}=\underline{P}_{2} \underline{V}_{2}$
$\mathrm{T}_{1} \quad \mathrm{~T}_{2} \mathrm{H}$. MIXTURES OF GASES AND PARTIAL PRESSURES (DALTON'S
LAW OF PARTIAL PRESSURES) a mixture of gases is equal to the sum of the partial pressures exerted by each gas.
$P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots$.

Collecting Gases over Water

Example: The total pressure in a 1.00 liter container is 725 mm Hg . The container contains water vapor and nitrogen gas.
If the partial pressure of the water vapor is 225 mm Hg , what is the partial pressure of the nitrogen gas.

$$
\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{N}_{2}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}
$$

I. MOLE FRACTIONS; Mixtures of gases

The mole fraction of a component is the fraction of moles of that component of the total moles of the gas mixture.

IV GASES IN CHEMICAL REACTIONS: STOICHIOMETRY--Review:
Certain chemical reactions involve gas as a reactant or product. For these types of reactions, the stoichiometric calculations involve the use of:

1) $P V=n R T$
2) 22.4 at STP
3) Molar volumes

The general stoichiometric scheme
Vol. of known (gas)

Gas Problems:

1. How many liters of ammonia gas can be produced by the reaction of 735 ml hydrogen gas with an excess nitrogen gas at $425^{\circ} \mathrm{C}$ and 135 atm ? Nitrogen + hydrogen --> ammonia Ans. $=0.490 \mathrm{~L}$
2. How many liters of carbon dioxide gas at $0^{\circ} \mathrm{C}$ and 1 atm are produced by the complete combustion of 60.0 mol of liquid glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

Ans. $=9.10 \times 10^{3} \mathrm{CO}_{2}$
3. How many liters of the air pollutant $\mathrm{NO}(\mathrm{g})$ could be produced at $985^{\circ} \mathrm{C}$ and a pressure of 30.0 atm by the reaction of oxygen gas with 455 g of nitrogen gas.
Ans. $=112$ L NO
4. A 655 ml gas cylinder filled with oxygen gas at a pressure of 95 atm and at $26.0^{\circ} \mathrm{C}$ was used by a scuba diver. The pressure after it was used was 85 atm . How many moles of oxygen gas were used by the diver?
Ans $=0.2 \mathrm{~mol} \mathrm{O}_{2}$
5. A flask contained 1.017 mol of carbon dioxide. The gas exerted a pressure of 925 mm Hg at a temperature of $28^{\circ} \mathrm{C}$. When an additional 0.250 mole of Carbon dioxide was added to the flask the temperature increased to $35^{\circ} \mathrm{C}$. What is the new pressure in the flask?
Ans. $=1.56 \mathrm{~atm} \mathrm{CO} 2$
6. A container with only He had a pressure of 544 torr at a temperature of $35^{\circ} \mathrm{C}$. When 0.810 g of Ne is added to this container, the pressure increases to 959 torr. Calculate the grams of He in the container.

$$
\text { Ans. }=0.212 \mathrm{~g} \mathrm{He}
$$

7. 6.53×10^{28} molecules of Oxygen occupy 15.00 liters. What is the volume occupied by 66.5 g of carbon dioxide under the same conditions?
Ans. $=2.10 \times 10^{-4} \mathrm{~L} \mathrm{CO}_{2}$
8. A mixture containing 1.22 g Xe and $0.675 \mathrm{~g} \mathrm{NO}_{2}$ exerts a pressure of 1.44 atm . What is the partial pressure of NO_{2} ?
Ans. $=0.883 \mathrm{~atm} \mathrm{NO} 2$
9. The complete combustion of 0.500 g of hydrocarbon, containing only C and H , produced 0.771 L of CO_{2} at STP and 0.755 g of water. In another experiment, 0.218 g of sample occupied 185 ml at $23^{\circ} \mathrm{C}$ and 374 mm Hg . What is the molecular formula of the compound?

Ans. $=\mathrm{C}_{4} \mathrm{H}_{10}$
11. A sample of an unknown gaseous hydrocarbon had a density of $1.56 \mathrm{~g} / \mathrm{L}$ at $25.0^{\circ} \mathrm{C}$ AND 1.33 atm. Calculate the molar mass of the gas.
Ans. $=28.7 \mathrm{~g} / \mathrm{mol}$

VI. KINETIC MOLECULAR THEORY-Review

A. Gases are composed of such extremely tiny atoms or molecules that are widely separated by empty space.
B. Gas particles move in a random, rapid, and continuous motion, thus has kinetic energy.
C. Gas particles moves so rapidly and are so far apart the there is essentially no force of attraction between the particles.
D. Particles collide frequently wtih each other and with the walls of the container, the collisions are perfectly "elastic" - (No net loss of energy as a result of a collision)
VII. TEMPERATURE AND MOLECULAR VELOCITIES: AVERAGE KINETIC ENERGY

The average kinetic energy (energy of motion) of the gas particles are directly proportional to its absolute T° (Kelvin)

VIII MOLECULAR SPEEDS; DIFFUSION AND EFFUSION

A. MOLECULAR SPEEDS

B. DIFFUSION AND EFFUSION

Diffusion is the ability of two or more gases to spontaneously mix until it becomes a uniform, homogeneous mixture.

Effusion is the process by which gas particles flows thru a very small hole from a container of high pressure to a lower pressure.

Graham's Law of Effusion - The rate of effusion of a gas is inversely proportional to it's size [] at constant temperature and pressure.

Problem \#1: What is the rate of effusion for H_{2} if 15.00 ml carbon dioxide of CO_{2} takes 4.55 sec to effuse out of a container?

Problem \#2: What is the molar mass of gas X if it effuses 0.876 times as rapidly as $\mathrm{N}_{2}(\mathrm{~g})$?

IX REAL GASES

Gas laws describe the behavior of an ideal or "perfect" gas - a gas described by the kinetic molecular theory. Under normal conditions of typical pressure and temperature, gases follow the ideal gas laws fairly closely. At low temperature and/or high pressures gases deviate from the ideal gas laws.

A. Intermolecular forces of attraction
B. Molecular volume

