CHEM. 111
Spring 2006
100 points

NAME_			
	last	first	

EXAM 4

Significant Figures must be correct.	All set-ups must be shown or no credit will be given.	n.
1. (4 points) Write the conjugate	acid for each of the following:	

a. HCO₃ ¹ ______b. H₂O _____

2. (4points) Write the conjugate base for each of the following:

a. HPO₄ -2 ______b. H₂O _____

3. (4points) a) Write Bronsted acid-base equilibrium equations for the following:b) Show the acid-base conjugated species, labeling all species

(1) $HSO_4^- + C_2O_4^{-2}$

(2) $HPO4^{-2} + NH4^{+}$

4. (8 points) Calculate the pH of the following solutions

a. a solution with a $[H_3O^+] = 5.9 \times 10^{-9}$ _____setup:

Is this solution acidic or basic?_____

b. a solution with a $[OH^-] = 3.8 \times 10^{-3}$ setup:

Is this solution acidic or basic?_____

/20

5.	(6points) Calculate the hydronium ion concentration of the following solution	ons
	a. a solution with a [OH ⁻] = 9.8 X 10 ⁻⁹ setup:	
	b. a solution with a pOH = 9.35 setup:	
	/26	
6. ((3 points) Is the following a Lewis acid or Lewis base or neither? a. BBr ₃	
	Explain	
	briefly:	
7. ((12 points) Consider the reaction at equilibrium: $H_{2_{(g)}} + CO_{2_{(g)}} \Delta H_{2}O_{(g)} + CO_{(g)} \Delta H = +41 \text{ KJ}$	
	Predict the effect of the following changes. Would the changes cause the nother right, left, or no effect?	et reaction to go to
	a) Adding carbon dioxide gas	
	b) Decreasing the volume of the container	
	c) Increasing the temperature	
	d) Removing some CO	<u></u>
	e) Adding a catalyst	
	f) Increasing the pressure	<u></u>

8 . (14 points)	Given:				
	$H_{\lambda}(g) +$	$I_{\alpha}(\sigma) \Delta$	2 HI (g)	Kc = 49.5	at 440 °C

0.200 moles each of hydrogen and iodine gas were added to a 5.00 liter container. Calculate the equilibrium concentrations.

ANSWER	

9. (12 points) The decomposition of COCl₂ is:

$$COCl_2(g)$$
 Δ $CO(g)$ + $Cl_2(g)$

If 3.00 moles of COCL2 are placed in a 2.00 L container and 45.0 % is decomposed before equilibrium is esatblished at 20 $^{\rm o}{\rm C}$

a) Calculate the equilibrium constant, K_c

ANSWER				
h)	Coloulata tha	aquilibrium	aanstant	\boldsymbol{V}

b) Calculate the equilibrium constant, K_p

ANSWER____

10. (10 points)	Calculate the pH of 0.2	260 M pyridine, Co	5H5NH2, given: КЬ	$= 3.8 \times 10^{-10}$
Answer				
1 1115 W CI				
/10				
0				

11. (16 points) The equilibrium constant,Kc, for the following equation is 85.0 at 460 °C: $SO_2(g) + NO_2(g) \Delta SO_3(g) + NO(g)$

If .250 moles of SO_2 , 0.250 moles of NO_2 , 0.150 moles of SO_3 and 0.150 moles NO are placed in a 0.500 - Liter container:

a. Will be the net-reaction be to the right or left to obtain equilibrium. Show calculation.

b. What will be the concentration of each species at equilibrium?

ANSWER____

12. (10 points) A .012 M solution of nicotinic acid (niacin) $HC_6H_4NO_2$ has a pH of 3.2 nicotinic acid?	39. What is the Ka for
Answer	
What is the percent ionization for the above solution of Nicotinic acid?	
Answer	
/10	