CHEM. 111
NAME

EXAM V

Significant Figures must be correct. All set-ups must be shown
(34 points) 1. Calculate the pH of the following:
a. 0.250 M Cyanic acid $\mathrm{HOCN}\left(\mathrm{Ka}=3.5 \times 10^{-4}\right)$

ANSWER
b. $0.500 \mathrm{M} \mathrm{NaF}\left(\mathrm{KaHF}=6.8 \times 10^{-4}\right)$
c. $5.30 \mathrm{~g} \mathrm{NaHCO}_{3}$ dissolved in 100.0 mL of $1.00 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}\left(\mathrm{Ka}_{1}=4.3 \times 10^{-7}, \mathrm{Ka}_{2}=4.8 \mathrm{X10}^{-11}\right)$

ANSWER

d. $0.500 \mathrm{NaHSO} 3\left(\mathrm{Ka}_{1}=1.3 \times 10^{-2}, \mathrm{Ka}_{2}=6.3 \times 10^{-8}\right)$

1. (10 points) A solution contains .787 M KI and 2.82 M KCl . Solid AgNO_{3} is slowly added to the solution. Which will precipitate first, AgI or AgCl ? (Ksp of $\mathrm{AgI}=1.8 \times 10^{-17} \mathrm{AgCl}=1.8 \mathrm{X} \mathrm{10}{ }^{-10}$)
(12 points) 3. Will the following solutions be acidic, basic or neutral? Write the equilibrium equations (and calculations, if necessary) to support your answer.
a. $\mathrm{KHC}_{2} \mathrm{O}_{4}\left(\mathrm{Ka}_{1}=5.6 \times 10^{-2}, \mathrm{Ka}_{2}=5.1 \mathrm{X10}^{-5}\right)$
b. AlCl_{3}
c. $\mathrm{NH}_{4} \mathrm{NO}_{3}\left(\mathrm{~Kb} \mathrm{NH} 3=1.8 \times 10^{-5}\right)$
(15 points) 4. Calculate the pH of the resulting solution when 100.00 mL of $0.500 \mathrm{M} \mathrm{HNO}_{2}$ is added to 50.00 mL of $3.00 \mathrm{M} \mathrm{NaOH}\left(\mathrm{Ka} \mathrm{HNO}_{2}=4.5 \mathrm{X10}^{-4}\right)$
(15 points) 6. What is the solubility of ZnS in a solution that is saturated with $\mathrm{H}_{2} \mathrm{~S}(0.100 \mathrm{M})$ If the $\mathrm{pH}=3.50\left(\mathrm{Ka}_{1}=8.9 \times 10^{-8} \mathrm{Ka} 2=1.2 \times 10^{-13}\right)$
\qquad
(18 points) 7. How many moles of NaOH should be added to 100.0 mL of 0.200 M Benzoic Acid $\left(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$ to produce a solution with a $\mathrm{pH}=6.50 ?\left(\mathrm{Ka}\right.$ Benzoic acid $=6.3 \mathrm{X10}^{-5}$)
\qquad
