Name			

Chem. 111 Practice Final Exam

Show all work in an organized way. Show all units.

	Question	Answer
	Unit 1	
1.	What is the formula for mercurous perbromate?	
-	r and r and r	
2.	What is the mass of carbon in a sample of sucrose $C_{12}H_{22}O_{11}$ that contains 9.87 X 10 ³⁴ atoms of oxygen?	
	contains 9.87 X 10 ³⁴ atoms of oxygen?	
3.	Show the balanced equation with states for: Sodium metal is added t	o water
4.	What is the empirical formula of a compound if a sample of that	
4.	compound contains 405 moles of carbon 591 grams of hydrogen	
	compound contains .405 moles of carbon .591 grams of hydrogen and 2.71 X 10 ²² atoms of nitrogen?	
	and 2.71 71 10 atoms of introgen.	
	Unit 2	
1.	Draw the electron dot structure for boron tri bromide in the box at right	

2.	What kind of intermolecular bond exists between molecules of CH ₄ ?	
3.	Write the equation for the reaction showing the first electron affinity step in the formation of ferrous bromide, with states.	
4.	What is the volume of the atom of an element that crystallizes as a body-centered cube if the volume of the unit cell is 1.97 x 10 ⁻²² cm ³ ?	
5.	What is the mass of 2.54 ml of H_2 at 195 ^{0}C and 850 mmHg?	
6.	It takes 59 seconds for .50L of nitrogen gas to effuse through an apparatus. How many seconds for the same volume of 2 liters of hydrogen gas to effuse through the same apparatus?	

	Unit 3	
1.	What Halogen has the highest electron affinity?	
2.	Write the <u>net ionic</u> equation for the following reaction with states: Hydrochloric acid solution is added to silver acetate.	
3.	Is NH ₄ C ₂ H ₃ O ₂ a strong, weak or nonelectrolyte?	
4.	What mass of calcium chloride must be added to 100 grams of water to make it freeze at 269 K?	
5.	Which period 3 metal would have the largest radius?	
6.	An aqueous solution that contains 115.662 g of a nonvolatile nondissociating solute in 1125 g of water boils at 102.50 °C. What is the molar mass of the solute?	
		3

_			
	7.	What is the molal concentration of sodium in a 20.5 % (m/m) aqueous solution of sodium phosphate?	
	8.	What is the temperature if the osmotic pressure of a solution is 2.07 atm, and the solution is made by adding 128 grams of a protein of molar mass 2,805 g/mol to enough water to make 1500.0 ml of	
		solution?	
	9.	205 ml of .45 M sucrose solution is made from .025 L of solution. What is the original molar concentration?	

10. What mass of precipitate is formed who chloride is reacted with 145.00 ml of	en 135.00ml .25 M calcium 55M potassium sulfate?
Unit 4	
1. For the following equation write the eq	milibrium avaraggian
$N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$	
2. What is the conjugate acid of PO ₃ ⁻³	
3. Is PCl ₃ a Lewis acid or Lewis base	
4. What is the pH of a 5.34 X10 ⁻⁵ M solu	
5. What is the hydronium ion concentration solution? Set up:	on in a .00000236M KOH

6. What is the pH of a .01100 M solution of NH ₃	
7. For the following equation will the equilibrium shift left, right or no change if hydrogen is added? N(g) + 3 H(g) \(\otimes \) NH(g)	
$N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$ 8. For the reaction $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$ At 300° C, Kc has a value of 9.6. Will the reaction go left, right or it is already at	
equilibrium if $[H_2] = 0.0400 \text{ M}$ $[N_2] = 0.025 \text{ M}$ and $[NH_3] = 2.50 \text{ M}$	
9. For the following reaction label the conjugate acid base pairs	
$CH NH_3^+ + HSO_3^- \Leftrightarrow$	

Unit 5		
1. What is the pH of a solution that is 0.100M	I of NH ₃ and .200 M NH ₄ Cl?	
*	·	
2. Is a solution of FeCl ₃ going to be acidic base	sic or neutral? Show reaction	
as proof.	sie of neutral: Show reaction	
as proof.		
3. Would equimolar solutions of KClO ₃ and I	HClO, he a huffer solution?	
Yes or no? Why?	10103 be a barrer solution.	
1 CS Of HO: Willy:		
4. Would .05 moles of NH ₃ mixed with .10 m	oles of HCl in one liter of	
water be a buffer solution? Yes or no? Set		
water of a fairer solution. Tes of no. see	u p.	

		T
5.	What is the pH of a solution of .0300 M KHSO ₄ ?	
	1 - T.	
	Would a manifest form if 15 0 ml of 0010 M Ph (NO.) mag mind	
6.	Would a precipitate form if 15.0 ml of .0010 M Pb(NO ₃) ₂ was mixed with 25.0 ml of .00030M NaBr (Ksp PbBr ₂ = $6.6X10^{-6}$)	
	with 25.0 ml of .00030M NaBr (Ksp PbBr ₂ = 6.6×10^{-6})	
	-	
1		

Acid Ionization Constants at 25 °C

Substnace	Formula	Ka
Acetic acid	HC ₂ H ₃ O ₂	1.7 X 10 ⁻⁵
Benzoic acid	HC ₇ H ₅ O ₅	6.3 X 10 ⁻⁵
Boric acid	H ₃ BO ₃	5.9 X 10 ⁻¹⁰
Carbonic acid	H ₂ CO ₃	4.3 X 10 ⁻⁷
	HCO ₃ -	4.8 X 10 ⁻¹¹
Cyanic Acid	HOCN	
Formic acid	HCHO ₂	1.7 X 10 ⁻⁴
Hydrocyanic acid	HCN	4.9 X 10 ⁻¹⁰
Hydroflouric acid	HF	6.8 X 10 ⁻⁴
Hydrogen sulfate ion	HSO ₄ -	1.1 X 10 ⁻²
Hydrogen sulfide	H ₂ S	8.9 X 10 ⁻⁸
	HS-	1.2 X 10 ⁻¹³ †
Hypochlorous acid	HCIO	3.5 X 10 ⁻⁸
Nitrous acid	HNO ₂	4.5 X 10 ⁻⁴
Oxalic acid	$H_2C_2O_4$	5.6 X 10 ⁻²
	HC ₂ O ₄ -	5.1 X 10 ⁻⁵
Phosphoric acid	H ₃ PO ₄	6.9 X 10 ⁻³
	H ₂ PO ₄ -	6.2 X 10 ⁻⁸
	HPO ₄ ² -	4.8 X 10 ⁻¹³
Phosphorous acid	H ₂ PHO ₃	1.6 X 10 ⁻²
Pyruvic acid	HC ₃ H ₃ O ₃	1.4 x 10 ⁻⁴
Sulfurous acid	H_2SO_3	7 X 10 ⁻⁷
	HSO ₃ -	6.3 X 10 ⁻⁸
Hydrogen sulfide Hypochlorous acid Nitrous acid Oxalic acid Phosphoric acid Phosphorous acid Pyruvic acid	H ₂ S HS ⁻ HCIO HNO ₂ H ₂ C ₂ O ₄ HC ₂ O ₄ HC ₂ O ₄ H ₂ PO ₄ H ₂ PO ₄ H ₂ PO ₄ H ₂ PHO ₃ HC ₃ H ₃ O ₃ HC ₃ H ₃ O ₃ H ₂ SO ₃	8.9 X 10 ⁻⁸ 1.2 X 10 ^{-13†} 3.5 X 10 ⁻⁸ 4.5 X 10 ⁻⁴ 5.6 X 10 ⁻² 5.1 X 10 ⁻⁵ 6.9 X 10 ⁻³ 6.2 X 10 ⁻⁸ 4.8 X 10 ⁻¹³ 1.6 X 10 ⁻² 1.4 x 10 ⁻⁴ 7 X 10 ⁻⁷

Base Ionization constants

Base		Kb
Ammonia	NH ₃	1.76 X 10 ⁻⁵
Anniline	C ₆ H ₅ NH ₂	3.94 X 10 ⁻¹⁰
1-Butylamine	CH ₃ (CH ₂) ₂ CH ₂ NH ₂	4.0 X 10 ⁻⁴
Dimethylamine	(CH ₃) ₂ NH	5.9 X 10 ⁻⁴
Ethanolamin	HOC ₂ H ₄ NH ₂	3.18 X 10 ⁻⁵
Ethylamine	CH ₃ CH ₂ NH ₂	4.28 X 10 ⁻⁴
Hydrazine	H ₂ NNH ₂	1.3 X 10 ⁻⁶
Hydroxlamine	HONH ₂	1.07 X 10 ⁻⁸
Methylamine	CH ₃ NH ₂	4.8 X 10 ⁻⁴
Piperidine	C ₅ H ₁₁ N	1.3 X 10 ⁻³
Pyridine	C ₅ H ₅ N	1.7 X 10 ⁻⁹
Trimethyl amine	(CH ₃) ₃ N	6.25 X 10 ⁻⁵