100 points Fall 2009
Name \qquad
15% of overall Chemistry 111 grade
Chem. 111 Practice Final Exam
Show all work in an organized way. Show all units.

Question	Answer
Unit 1	
1. What is the formula for mercurous perbromate?	
2. What is the mass of carbon in a sample of sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ that contains $9.87 \mathrm{X} 10^{34}$ atoms of oxygen?	

3. Show the balanced equation with states for: Sodium metal is added to water
4. What is the empirical formula of a compound if a sample of that compound contains .405 moles of carbon .591 grams of hydrogen and 2.71×10^{22} atoms of nitrogen?

Unit 2

1. Draw the electron dot structure for boron tri bromide in the box at right
2. What kind of intermolecular bond exists between molecules of CH_{4} ?
3. Write the equation for the reaction showing the first electron affinity step in the formation of ferrous bromide, with states.
4. What is the volume of the atom of an element that crystallizes as a body-centered cube if the volume of the unit cell is $1.97 \times 10^{-22} \mathrm{~cm}^{3}$?
5. What is the mass of 2.54 ml of H_{2} at $195^{\circ} \mathrm{C}$ and 850 mmHg ?
6. It takes 59 seconds for .50 L of nitrogen gas to effuse through an apparatus. How many seconds for the same volume of 2 liters of hydrogen gas to effuse through the same apparatus?

Unit 3	
1. What Halogen has the highest electron affinity?	

2. Write the net ionic equation for the following reaction with states: Hydrochloric acid solution is added to silver acetate.
3. Is $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ a strong, weak or nonelectrolyte?
4. What mass of calcium chloride must be added to 100 grams of water to make it freeze at 269 K ?
5. Which period 3 metal would have the largest radius?
6. An aqueous solution that contains 115.662 g of a nonvolatile nondissociating solute in 1125 g of water boils at $102.50{ }^{\circ} \mathrm{C}$. What is the molar mass of the solute?
7. What is the molal concentration of sodium in a $20.5 \%(\mathrm{~m} / \mathrm{m})$ aqueous solution of sodium phosphate?
8. What is the temperature if the osmotic pressure of a solution is 2.07 atm, and the solution is made by adding 128 grams of a protein of molar mass $2,805 \mathrm{~g} / \mathrm{mol}$ to enough water to make 1500.0 ml of solution?
9. 205 ml of .45 M sucrose solution is made from .025 L of solution. What is the original molar concentration?
10. What mass of precipitate is formed when 135.00 ml .25 M calcium chloride is reacted with 145.00 ml of .55 M potassium sulfate?

Unit 4	
1. For the following equation write the equilibrium expression $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	
2. What is the conjugate acid of $\mathrm{PO}_{3}{ }^{-3}$	
3. Is PCl_{3} a Lewis acid or Lewis base	
4. What is the pH of a $5.34 \mathrm{X} 10^{-5} \mathrm{M}$ solution of NaOH ? Set up:	
5. What is the hydronium ion concentration in a .00000236 M KOH solution? Set up:	

6. What is the pH of a .01100 M solution of NH_{3}
7. For the following equation will the equilibrium shift left, right or no change if hydrogen is added?
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
8. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ At $300^{\circ} \mathrm{C}, \mathrm{Kc}$ has a value of 9.6. Will the reaction go left, right or it is already at equilibrium if $\left[\mathrm{H}_{2}\right]=0.0400 \mathrm{M}\left[\mathrm{N}_{2}\right]=0.025 \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]=2.50 \mathrm{M}$
9. For the following reaction label the conjugate acid base pairs
$\mathrm{CH} \mathrm{NH}_{3}{ }^{+} \quad+\quad \mathrm{HSO}_{3}{ }^{-} \Leftrightarrow$

Unit 5

1. What is the pH of a solution that is 0.100 M of NH_{3} and $.200 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$?
2. Is a solution of FeCl_{3} going to be acidic basic or neutral? Show reaction as proof.
3. Would equimolar solutions of KClO_{3} and HClO_{3} be a buffer solution? Yes or no? Why?
4. Would .05 moles of NH_{3} mixed with .10 moles of HCl in one liter of water be a buffer solution? Yes or no? Setup:
5. What is the pH of a solution of $.0300 \mathrm{M} \mathrm{KHSO}_{4}$?
6. Would a precipitate form if 15.0 ml of $.0010 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ was mixed with 25.0 ml of $.00030 \mathrm{M} \mathrm{NaBr} \quad\left(\mathrm{Ksp} \mathrm{PbBr}_{2}=6.6 \mathrm{X10}^{-6}\right)$

Acid Ionization Constants at $25^{\circ} \mathrm{C}$

Substnace	Formula	Ka
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.7×10^{-5}
Benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{5}$	6.3×10^{-5}
Boric acid	$\mathrm{H}_{3} \mathrm{BO}_{3}$	5.9×10^{-10}
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}
	$\mathrm{HCO}_{3}{ }^{-}$	4.8×10^{-11}
Cyanic Acid	HOCN	
Formic acid	HCHO_{2}	1.7×10^{-4}
Hydrocyanic acid	HCN	4.9×10^{-10}
Hydroflouric acid	HF	6.8×10^{-4}
Hydrogen sulfate ion	$\mathrm{HSO}_{4}{ }^{-}$	1.1×10^{-2}
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	8.9×10^{-8}
	HS ${ }^{-}$	$1.2 \times 10^{-13 \dagger}$
Hypochlorous acid	HClO	3.5×10^{-8}
Nitrous acid	HNO_{2}	4.5×10^{-4}
Oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.6×10^{-2}
	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$	5.1×10^{-5}
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	6.9×10^{-3}
	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	6.2×10^{-8}
	$\mathrm{HPO}_{4}{ }^{2-}$	4.8×10^{-13}
Phosphorous acid	$\mathrm{H}_{2} \mathrm{PHO}_{3}$	1.6×10^{-2}
Pyruvic acid	$\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{3}$	1.4×10^{-4}
Sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	7×10^{-7}
	$\mathrm{HSO}_{3}{ }^{-}$	6.3×10^{-8}

Base Ionization constants

Base		Kb
Ammonia	NH_{3}	1.76×10^{-5}
Anniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	3.94×10^{-10}
1-Butylamine	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	4.0×10^{-4}
Dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}^{2}$	5.9×10^{-4}
Ethanolamin	$\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}$	3.18×10^{-5}
Ethylamine	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	4.28×10^{-4}
Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	1.3×10^{-6}
Hydroxlamine	HONH_{2}	1.07×10^{-8}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.8×10^{-4}
Piperidine	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$	1.3×10^{-3}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.7×10^{-9}
Trimethyl amine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.25×10^{-5}

