Exam 2

Significant Figures must be correct. All set-ups must be shown in a clear and organized way.

1. Toluene C 7 H 8 has a specific heat of $1.13 \mathrm{~J} / \mathrm{gK}$. To what temperature will toluene be raised if 35.50 grams of toluene starting at 25.15 degrees C are heated with 1125 calories. (1 calorie $=4.18$ Joules) (10 points)

Answer \qquad
2. Draw the lewis dot structures for the following: (12 points)
a. $\mathrm{CO}_{3}{ }^{2-}$
b. NF3
c. POCl_{3}
d. BH_{3}
3. (14 pts) Draw and label the Born-Haber cycle for the formation of lithium fluoride.

From the following data, calculate the lattice energy of cesium oxide.
Enthalpy of bond dissociation of fluorine: $\quad+75.3 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of formation of lithium fluoride: $\quad-594 \mathrm{~kJ} / \mathrm{mol}$
First electron affinity of fluorine: $\quad-328 \mathrm{~kJ} / \mathrm{mol}$
First ionization energy of lithium: $\quad+520 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of sublimation of lithium: $+155 \mathrm{~kJ} / \mathrm{mol}$

Answer
/14 poin
5. Place the following in order of decreasing radius. (2 points)

$$
\mathrm{Ca}^{2+} \mathrm{S}^{2-} \mathrm{Cl}^{-}
$$

\qquad $>$ \qquad $>$ \qquad
6. Arrange the following elements in order of decreasing first ionization energy: (2 points)

As, Br, K

\qquad $>$ \qquad > \qquad
7. Arrange the following in order of increasing atomic radius: (8 points)

$$
\mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{Cl}^{-} \mathrm{Mg}^{2+} \mathrm{Na}^{+} \mathrm{K}
$$

\qquad $>$ \qquad $>$ \qquad $>$ \qquad $>\quad>$ $>$

Which of the above are iso electronic \qquad
8. Pick the larger (larger radius) species from each of the following pairs. (3 points)
S or S^{2-} \qquad

Na or S \qquad
9. Is the following an ionic compound, polar molecule or nonpolar molecule? State the type of intermolecular bond between two different molecules of the same compound. (6 points)

Type of Compound
Type of intermolecular bond
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
$\mathrm{H}-\mathrm{Cl}$

$\mathrm{H}-\mathrm{C}-\mathrm{Cl}$
H
$\mathrm{C}=\mathrm{O}$ \qquad
\qquad
/21 points

For question 10, consider the following diagram and answer what follows (31 points)

How would you label the axes
a. \qquad b. \qquad (2 points)

Put a "c" where the three states of matter exist in equilibrium. What is this point called?
\qquad (2 points)

Put a " d " where the critical temperature is. What is the critical temperature?
\qquad (2 Points)

What process(es) is/are occurring at
e. \qquad
\qquad
\qquad
\qquad (4 points)

Complete the above phase diagram as it should look for water (2 points)

What processes occur at any point on the curve that you added to the above
graph \qquad (2 points)

On the correct axis put 1 atm at the approximate position
On the correct axis put $100^{\circ} \mathrm{C}$ in the approximate position
4 points
Label the following points with the appropriate letter.
Boiling point
g
1 point

Label the following regions.
Solid Liquid Gas
3 points
Label point h in the liquid region. Draw a straight line to a point where the water would freeze at constant pressure and label the point i.
Label point J in the gaseous region. Draw a straight line to a point where the water would condense at constant pressure and label the point K .

4 points

How is the phase diagram for water different from the phase diagram for carbon dioxide. Explain how this diagram shows that water is more dense as a liquid than as a solid. 5 points

If a liquid A has a higher boiling point than liquid B which liquid has weaker intermolecular bonds?

Which liquid A or B above is more volatile?

Which liquid A or B has the higher vapor pressure at $25^{\circ} \mathrm{C}$
11. How much energy [Heat in kilojoules] is needed to convert 225.0 g of ice at -5.0 oC to steam at 102.0 oC ? Hfusion $=335 \mathrm{~J} / \mathrm{g}$ Hvap $=2.26 \mathrm{~kJ} / \mathrm{g}$ Specific heat of ice $=2.10 \mathrm{~J} / \mathrm{g} \mathrm{oC}$ Specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \mathrm{oC}$ Specific heat of steam $=2.0 \mathrm{~J} / \mathrm{g} \mathrm{oC}$

Periodic Table with Electronegativities

| 1 A | 2 A | 3 B | 4 B | 5 B | 6 B | 7 B | 8 B | | | 1 B | 2 B | 3 A | 4 A | 5 A | 6 A | 7 A | 8 A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | | | | | | | | | | | | 2 |
| \mathbf{H} | | | | | | | | | | | | | | | | | $\mathbf{H e}$ |
| 2.1 | | | | | | | | | | | | | | | | | |
| 3 | 4 | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathbf{L i}$ | $\mathbf{B e}$ | | | | | | | | | | | \mathbf{B} | \mathbf{C} | \mathbf{N} | \mathbf{O} | \mathbf{F} | $\mathbf{N e}$ |
| 1.0 | 1.5 | | | | | | | | | | | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | |
| 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 |
| $\mathbf{N a}$ | $\mathbf{M g}$ | | | | | | | | | | | $\mathbf{A l}$ | $\mathbf{S i}$ | \mathbf{P} | \mathbf{S} | $\mathbf{C l}$ | $\mathbf{A r}$ |
| 0.9 | 1.2 | | | | | | | | | | | 1.5 | 1.8 | 2.1 | 2.5 | 3.0 | |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| \mathbf{K} | $\mathbf{C a}$ | $\mathbf{S c}$ | $\mathbf{T i}$ | \mathbf{V} | $\mathbf{C r}$ | $\mathbf{M n}$ | $\mathbf{F e}$ | $\mathbf{C o}$ | $\mathbf{N i}$ | $\mathbf{C u}$ | $\mathbf{Z n}$ | $\mathbf{G a}$ | $\mathbf{G e}$ | $\mathbf{A s}$ | $\mathbf{S e}$ | $\mathbf{B r}$ | $\mathbf{K r}$ |
| 0.8 | 1.0 | 1.3 | 1.5 | 1.6 | 1.6 | 1.5 | 1.8 | 1.9 | 1.9 | 1.9 | 1.6 | 1.6 | 1.8 | 2.0 | 2.4 | 2.8 | 3.0 |
| 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| $\mathbf{R b}$ | $\mathbf{S r}$ | \mathbf{Y} | $\mathbf{Z r}$ | $\mathbf{N b}$ | $\mathbf{M o}$ | $\mathbf{T c}$ | $\mathbf{R u}$ | $\mathbf{R h}$ | $\mathbf{P d}$ | $\mathbf{A g}$ | $\mathbf{C d}$ | $\mathbf{I n}$ | $\mathbf{S n}$ | $\mathbf{S b}$ | $\mathbf{T e}$ | \mathbf{I} | $\mathbf{X e}$ |
| 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 1.9 | 2.2 | 2.2 | 2.2 | 1.9 | 1.7 | 1.7 | 1.8 | 1.9 | 2.1 | 2.5 | 2.6 |
| 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |
| $\mathbf{C s}$ | $\mathbf{B a}$ | $\mathbf{L a}$ | $\mathbf{H f}$ | $\mathbf{T a}$ | \mathbf{W} | $\mathbf{R e}$ | $\mathbf{O s}$ | $\mathbf{I r}$ | $\mathbf{P t}$ | $\mathbf{A u}$ | $\mathbf{H g}$ | $\mathbf{T l}$ | $\mathbf{P b}$ | $\mathbf{B i}$ | $\mathbf{P o}$ | $\mathbf{A t}$ | $\mathbf{R n}$ |
| 0.7 | 0.9 | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 | 2.2 | 2.2 | 2.2 | 2.4 | 1.9 | 1.8 | 1.9 | 1.9 | 2.0 | 2.2 | 2.4 |
| 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | | |
| $\mathbf{F r}$ | $\mathbf{R a}$ | $\mathbf{A c}$ | $\mathbf{R f}$ | $\mathbf{D b}$ | $\mathbf{S g}$ | $\mathbf{B h}$ | $\mathbf{H s}$ | $\mathbf{M t}$ | $\mathbf{D s}$ | $\mathbf{U u u}$ | $\mathbf{U u b}$ | $\mathbf{U u t}$ | $\mathbf{U u q}$ | $\mathbf{U u p}$ | $\mathbf{U u h}$ | | |
| 0.7 | 0.9 | 1.1 | | | | | | | | | | | | | | | |

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
1.1	1.1	1.1	1.2	1.2	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.3
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$
1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.5	

