Review Final-Chem 111

1. Which of the following compounds will produce an acidic solution when dissolved in water? a. NO₂ b. NaClO₄ c. K_2SO_3 d. Na₂O e. NaCN

2. Which of the following compounds will produce a basic solution when dissolved in water? a.) K_2O b. HNO_3 c. NH_4CI d. HBr e. KBr

3. For the equilibrium given below, list the two pairs of base/conjugate acid: $HSO_3^- + HF \implies H_2SO_3 + F^-$ Answer:

a.

b.

4. Consider a saturated solution of CaF2 (s). Which of the following may take place upon the

addition of Ca(NO₃)₂? Circle **all** correct answers.

a. More CaF₂ (s) dissolves. b. More CaF₂ will precipitate .

c. The concentration of the fluoride ions will decrease.

d. The concentration of Ca^{2+} ions will increase.

e. The concentration of NO3⁻ will have no effect on the solubility of CaF₂ (s).

f. All of the above will happen g. None of (a) to (e) will happen.

5. The equilibrium concentration of HSO_3^- is much higher than the equilibrium conc. of $SO_3^{2^-}$ in the reaction:

 $HSO_3^- + H_2O \implies SO_3^{2-} + H_3O^+$ List two conjugate acid /base pairs and label each species as stronger or weaker acid or base. a.

b.

6. A. Write the equilibrium equation for the solubility of CaCO₃ (s).

B. Circle **all** correct answers:

The molar solubility of CaCO₃(s) in a saturated solution can be decreased by:

a. Adding Na₂CO₃ b. Adding a strong acid c. Adding CaCl₂

d. Adding more CaCO₃ (s).

7. Fill in the table given below:

Unit cell	Simple cube	Body centered cube	Face-centered cube	Hexagonal unit cell
Number of particles inside the unit cell				
The coordination number				
Relative packing efficiency				
Relative Density				

8. a. What are the structural components that exist in a compound for hydrogen bonding to take place?

Ans:	,, 0	r			
b. The intermol	ecular forces the	at exist between hat exist betweer	<u>nonpolar</u> molecu u polar molecules	iles are called	
	·				
9 What are the	e forces of attract	tion between the	lattice points of	a crystalline solid made of:	
a. MgCl ₂	b. SO ₂ (bent ge	eometry)	c. Copper	d. NH3(pyramidal)	
e. KBr	f. CO ₂ (linear)				
10) a. Whati	s the mass of on	e mole of cobal	t atoms in grams	? Ans:	
b. What is	the mass of one	e cobalt <u>atom</u> in a	amu? Ans:		
c. What is	the mass of one	cobalt atom in g	rams? Show the	e set-up:	
11 - Define (Ans: _		
TT. a. Define s	solution :			······································	
b. Is air a c	compound, an ele	ement , or a solu	tion?		
c If you co	mbine sand and	water are your	reparing a new	element a new compound	ora
solution?	. Explain y	our answer.	repairing a new	element, a new compound,	UI a
					_
12. Write the c	hemical formula	s of the following	compounds:		
a sodium nitri	do	h cohaltous ph	osphido		
a. soulum mith	ue	b. coballous pr			
c. nickel (II) bis	ulfide	d. Antimony (II) bisulfite	_	
e. lead (II) thiod	cyanate	f. Aluminum thi	osulfate		
13 How many	molos of CoHo) contain 7 03 v	10.4 carbon ato	mc?	
setup:	110163 01 061 160			113 :	
<u></u>					
				Answer:	
14. a. Explain	how particles of	f a hydrophobic :	sol remain dispe	rsed without precipitating.	
b. Heating ma	av cause a hvdro	ohobic sol to coa	aulate. Whv?		
5 5 5 5	.,		, <u> </u>		
15. List three r	nethods for coag	julating a hydrop	hobic colloid.		
a					
b					
С.					

16. a. What kind of particles (atoms, molecules, cations, anions, or cations and anions) may occupy the lattice points in each of the crystalline solids given below.

b.Give one or two examples of an element or a compound that may exhibit each type of crystalline solids.

Type of crystalline solid	metallic crystal	ionic crystal	covalent network crystal	molecular crystal
Kind of particles				
Give one or two examples of an element or a compound.				

17. Which of the 0.010 m solution given below : K_3PO_4 , $C_2H_6O(alcohol)$, HCN, NaOH, (NH₄)₂SO₄

would have: a. The highest boiling point _____

b. The lowest freezing point. _____

Explain your answer.

18. a) Define :i. critical temperature:

ii. normal boiling point:

b. Draw a typical vapor pressure-temperature phase diagram for water. Label the axes and the regions on the diagram where H₂O is expected to be in the solid, liquid, and gaseous state. Indicate on the diagram the normal boiling point, the normal freezing point, the triple point and the critical temperature.

19. What is the term used for a colloidal disperation a. solid dispersed in liquid	rsion of : b. gas dispersed in liquid
c. liquid dispersed in liquid	d. solid dispersed in gas
e. liquid dispersed in gas	f. gas dispersed in solid
 20. A. What is the approximate size range of on B. List <u>five</u> characteristic properties of colloca. 	olloidal particles in nm (nanometer)? oids:
b.	
C.	
d.	

e.

21. **Circle** any solution that may be considered as a buffer. Justify your answer by listing all particles present in the solution after the reaction goes to completion, if any.

	Particles present after reaction
a. One mole ammonium fluoride plus one mole of HBr.	a
b. One mole of formic acid, HCHO ₂ , plus 0.5 mole of k	КОН. b.
c. One mole of ammonia plus one mole of LiOH.	C
d. One mole of formic acid, HCHO ₂ , plus one mole of I	HCI. d.

22. a. Give the equation that shows the relationship between K_p and K_c . Define 'n 'given in your equation. Answer:

b. The equilibrium reaction given below is **exothermic**. A (g) + B (g) $\stackrel{\frown}{=}$ C (g) + D (g)

Circle any factor given below that will cause the above equilibrium to shift to the right.
a. Removal of 'A'. b. The addition of 'D'
c. Removal of 'C'. d. Increasing the temperature
e. Increasing the volume of the container.
23. Which of the molecules given below is nonpolar?
a. CH₄ (tetrahedral) b. PF₃ (pyramidal) c. HBr d. H₂S (bent)
24 What is the solubility product expression, K_{sp}, for Fe₃(PO₄)₂ ?

25. How many moles of chlorine atoms are needed to combine with 28.88 moles of oxygen atoms to produce Cl₂O₇ ? <u>Setup:</u>

26. A. Define: a. Electronegativity:

b. Electron affinity

c. ionization energy:

B. Give the general trend for the variation of the above properties by filling in the table given below:

	Electronega- tivity	Electron affinity	lonization energy	Metallic property
From left to right across a period				
Down a group				

27. A. Give the definitions of acids, bases, and acid-base reactions by filling in the table below:

	An acid	A base	An acid-base reaction
According to Arrhenius			
According to Bronsted-Lowry			
According to Lewis			

B. i. What is the conjugate acid for NH₃.

ii. What is the conjugate base for NH3 _____

iii. What is the conjugate acid for H₂O._____

iv. What is the conjugate base for H₂O.

28. a) When heat is added to a mixture of ice and water at 0 °C, the temperature remains unchanged for a while. Why? ______.

b. When will	the tem	perature of t	he wate	r start to	incre	ase?				
29. a. Is the	e pressu	re of the atm	osphere	e higher	on the	e mounta	ain or ii	n the va	lley?	_
b. The higher	the exte	ernal pressu	re (atmo	spheric	press	ure), the) (the I	ooiling point
of a liquid. c. The highe	r the ten	nperature, th	e		the v	apor pres	^{(h} ssure d	igher , or li of a liqu	ower) id.	
d. The strong	ger the ir	ntermolecula	(higher ar forces	, or lower) , the	(higher, o	or lower)	e norm	al boili	ng point	
30. What fac reaction?	tor char	ges the num	nerical v 	alue of t	he eq	uilibrium	consta	ant, K, f	or a pai	rticular
31. How are 1 a b c	real gase	es different f	rom idea 	al gases	?					
32. The beha temperature	avior of a	a real gas m	ay appro	bach tha	t of ar	n ideal ga	as at a	(high	or low)	
and a	(high, or low	pressure.								
33. Balance t	he follov	ving equation	ns:							
	a.	C7H14	+		0 ₂	\rightarrow		CO2	+	H ₂ O
	b.	Ca(OH) ₂	+	Na ₃ P0	D4	\rightarrow	Саз(PO4)2	+	NaOH
34. A. An information of a	on-excha any of th	ange (doubl e following ti k	e-displa hree cla)	cement sses of o) rea compo	action ma ounds: c	ay go to	o compl	etion du	e to the
B. In a doub	le-displa	cement read	ction, fo	rmation	of whi	ich of the	comp	ounds l	isted be	low would
not neces	sarily le	ad to a chen and bases)	nical cha	ange? (<u> </u>	Hint: \	/ou must	memo	orize the	e solubi	lity rules and
a. CO ₂ g. PbCl ₂	b. NH h. Na	l₃ ć ₂2CO₃	. AgBr	(d. HC	HO ₂	e. H <u></u>	20	f. C	o(OH)3
C. In a doub lead to a che acids and bas	ole-displa mical ch ses)	acement rea ange? (<u>Hint</u>	ction, fo : You m	rmation ust men	of whi norize	ich of the the solu	e comj ubility r	oounds ules an	listed b d the list	elow would t of strong
a. HNO3 35. Name th	b. Li0 e followi	OH c ng acids:	:. К ₃ РО,	4 0	d. (NH	1 ₄₎₂ SO4		e. B	aSO4	
a. HIO ₂		-		l	b. HI	 N				
e. HF				1	f. HBr	O ₃				
			-	·0-						

36. The molar solubility of CaF₂(s) in a saturated solution can be <u>increased</u> by adding:

a. CaCl₂ b. NaF c. HBr d. none of these

(<u>Hint</u>: You need to write the equilibrium equation for the solubility of CaF₂ given above)

37. When barium chloride is added to a saturated solution of $BaSO_4(s)$, which of the following will result?(<u>Hint</u>: Write the equilibrium equation for the solubility of $BaSO_4(s)$.)

- a. The concentration of SO_4^{2-} will increase.
- b. The concentration of Ba^{2+} in solution will not change.
- c. The added BaCl₂ will not dissolve and will settle to the bottom of the container.
- d. More BaSO₄ (s) will precipitate.
- e. All of the above will take place.

38. A mixture containing 25.53 g CaCl₂ and 19.38 g Na₂CO₃ is allowed to react according to the reaction given below:

(molar mass: AlCl₃= 133.5, Na₂CO₃ = 106, NaCl= 58.5, Al₂(CO₃)₃ = 234) 2 AlCl₃ + 3 Na₂CO₃ \rightarrow 6 NaCl + Al₂(CO₃)₃ a. How many grams of NaCl are produced? Setup:

Answer: 21.4 g NaCl b. Find the mass of any reacted AICl₃ or Na₂CO₃ assuming 100 % yield. Setup:

Answer: 9.23 g 39. How many grams of oxalic acids, H₂C₂O₄, are required to completely neutralize 35.0 ml of 0.670 M NaOH ? (molar mass: H₂C₂O₄ = 90.0, NaOH = 40.0, Na₂C₂O₄ = 134.0, H₂O = 18.0) H₂C₂O₄ + 2 NaOH \rightarrow Na₂C₂O₄ + 2 H₂O Setup:

Answer: 1.06 g 40. What is the mole fraction of ethylene glycol, $C_2H_6O_2$, in 5.55 m ethylene glycol solution? (molar mass of ethylene glycol = 62.0, $H_2O = 18.0$) Setup:

Answer: 0.091

41. The following equilibrium was achieved in a <u>3.00 liter</u> container.

 NH_4HS (s) \checkmark NH_3 (g) + H_2S (g) At equilibrium, there were 0.20 mole NH_4HS (s), 0.45 mole NH_3 (g), and 2.11 mole H_2S (g). Calculate K_C under these conditions. Setup:

Answer: 0.11

42. The density of an unknown gas is 2.89 g/liter at 33 $^{\circ}$ C and 745 torr. Calculate the molar mass of the unknown gas. (R= 0.0821 L.atm/mol.K) Setup:

Answer: 74.0 g/mole

Answer: 825

43. For the equilibrium: CH₄ (g) + H₂O (g) CO (g) + 3 H₂ (g)

at 1500 °C, K_C is 5.67. What is K_p for the equilibrium at 1500 °C? Setup:

44. For the equilibrium: $CH_3OH(g) \longrightarrow CO(g) + 3 H_2(g)_$ at 275 °C , K_p is 1.14 x 10³. What is K_c for the equilibrium at 275 °C ? Setup:

Answer: 0.0125 45. What is the molar solubility of MgF₂ in a 0.20 M NaF? (K_{sp} for MgF₂ = 8.0 x 10⁻⁸) (Hint: Write the equilibrium equation for the solubility of MgF₂) Setup:

Answer: 2.0×10^{-6} M

46. What is the pH of a 0.0030 M HNO₃ solution? Setup:

Answer: 2.52

47. What is the [H⁺] of a solution which is 0.15 M HNO₂ and 0.75 M NaNO₂? (K_a for HNO₂= 4.5 x 10⁻⁴) Setup:

Answer: 9.0×10^{-5} M 48. What is the [OH^{-]} of a solution which is 0.080 M (CH₃)₂NH and 0.32 M (CH₃)₂NH₂Cl ? [K_b for (CH₃)₂NH is 7.4 x 10⁻⁴] Setup:

Answer: 1.9×10^{-4} M 49. What is the concentration of the H⁺ ion in a 0.30 M HCN? (K_a for HCN = 4.0 x 10⁻¹⁰) Setup:

Answer: 1.1x10⁻⁵M

50. Draw the Lewis structure (electron-dot structure) for the following molecules and ions: a. CO_2 b. PO_3^{3-} c. CO_3^{2-} d. HCN(C is the central atom) 51. The addition of 8.83 g C₁₂H₂₂O₁₁ (a nonionizing compound) to a 125 ml of water at 23 $^{\circ}$ C resulted in 143 ml solution. (The density of water at 23 $^{\circ}$ C is 1.00g/ml; molar mass: C₁₂H₂₂O₁₁ =342.0, H₂O= 18.0) a. Calculate the molarity of the solution. Setup:

Answer: 0.181 M

b. Calculate the molality of the solution. Setup:

Answer: 0. 206

c. Find the freezing point of the solution given above. (K_f for water = 1.86 °C.kg/mole) Setup:

Answer: -0.384 ℃

52. Consider the following equilibria:

$H_2CO_3 + H_2O$	\leftarrow H ₃ O ⁺ + HCO ₃ ⁻	K _{a1} = 4.2 x 10 ⁻⁷
HCO3 ⁻ + H2O	\leftarrow H ₃ O ⁺ + CO ₃ ²⁻	K _{a2} = 4.2 x 10 ⁻¹¹

a. What is the hydrogen ion concentration, [H⁺], in a 0.300 M solution of H_2CO_3 ? Setup:

Answer: 3.5×10^{-4} M b. What the carbonate ion concentration, [CO₃²⁻], in the above 0.300 M H₂CO₃ ?

Answer: 4.2x10⁻¹¹ M

53. The pH of a 0.20 M weak monoprotic acid, HX, is 4.60. Calculate the ionization constant, K_a , for this acid. Setup:

Answer: 3.0 x10⁻⁹

54. What would be the ionization constant, K_a , of a weak monoprotic acid, HX, if it is 5.0 % ionized in a 0.18 M solution? Setup:

Answer: 4.7×10^{-4} 55. A compound contains 1.55 g phosphorus and 1.20 g oxygen. Calculate the simplest formula of the compound. Setup:

Answer: P₂O₃

56. Calculate the molarity of a solution made by diluting 8.00 ml of 15.00 M H₃PO₄ to a 0.500 L. Setup:

Answer:0.240 M

57. What would be the H⁺ concentration of a solution resulting from mixing 35.0 ml of 0.20 M HCl and 35.0 ml of 0.15 M NaOH ? Setup:

Answer: 0.024 M 58. What is the mass of CO₂ (g) collected in a 580 ml flask at 50 °C and 1.50 atm ? (R= 0.0821 L.atm/mol.K) Setup:

Answer: 1.44 g 59. What is the density of NH₃ (g) at 100 $^{\circ}$ C and 1.35 atm? (R= 0.0821 L.atm/mol.K) Setup:

Answer: 0.749 g

60. Consider the following reaction:

 $2 C_2H_6 (g) + 7 O_2 (g) \rightarrow 4 CO_2 (g) + 6 H_2O (g)$ a. What volume of oxygen gas is required for the complete combustion of 15.0 L of ethane, C_2H_6 (g), if all gases are measured at the same temperature and pressure? Setup:

Answer: 52.5 L b. What volume of oxygen gas is required for the complete combustion of 15.0 L of ethane, C_2H_6 (g), if all gases are measured at STP condition? Setup:

Answer: 52.5 L 61. How many grams of Fe(s) are needed to produce 100. L of H₂ (g), measured at STP?

3 Fe (s) + 4 H₂O (g) → Fe₃O₄ (s) + 4 H₂ (g) (molar mass: Fe = 55.8, = 231.4, H₂O = 18.0, H₂ = 2.00) Setup:

Answer: 187 g Fe

62. 350 ml of Ar (g) at 30 °C and 1.50 atm are mixed with 540 ml of N_2 (g) at 50 °C and 0.80 atm. The two gases do not react. What would be the total pressure, if the two gases were transferred to a 2.50 L flask at 80 °C. (R= 0.0821 L.atm/mol.K; molar mass:Ar = 39.95, N₂ = 28.0) Setup:

Answer: 0.435 atm

63. A mixture of 40.0 g oxygen gas and 40.0 g helium gas exerts a total pressure of 0.900 atm . What is the partial pressure of the oxygen gas? (molar mass of O_2 = 32.0, He = 4.00) Setup:

Answer: 0.100 atm