Review Final-Chem 111

1. Which of the following compounds will produce an acidic solution when dissolved in water?
a. NO_{2}
b. NaClO_{4}
c. $\mathrm{K}_{2} \mathrm{SO}_{3}$
d. $\mathrm{Na}_{2} \mathrm{O}$
e. NaCN
2. Which of the following compounds will produce a basic solution when dissolved in water?
a.) $\mathrm{K}_{2} \mathrm{O}$
b. HNO_{3}
c. $\mathrm{NH}_{4} \mathrm{Cl}$
d. HBr
e. KBr
3. For the equilibrium given below, list the two pairs of base/conjugate acid:

$$
\mathrm{HSO}_{3}^{-}+\mathrm{HF} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{F}^{-}
$$

Answer:

a.
b.
4. Consider a saturated solution of CaF_{2} (s). Which of the following may take place upon the addition of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$? Circle all correct answers.
a. More CaF_{2} (s) dissolves. b. More CaF_{2} will precipitate .
c. The concentration of the fluoride ions will decrease.
d. The concentration of Ca^{2+} ions will increase.
e. The concentration of $\mathrm{NO}_{3}{ }^{-}$will have no effect on the solubility of $\mathrm{CaF}_{2}(\mathrm{~s})$.
f. All of the above will happen
g. None of (a) to (e) will happen.
5. The equilibrium concentration of $\mathrm{HSO}_{3}{ }^{-}$is much higher than the equilibrium conc. of $\mathrm{SO}_{3}{ }^{2-}$ in the reaction:

$$
\mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons-\mathrm{SO}_{3}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

List two conjugate acid /base pairs and label each species as stronger or weaker acid or base.
a.
b.
6. A. Write the equilibrium equation for the solubility of CaCO_{3} (s).
B. Circle all correct answers:

The molar solubility of CaCO_{3} (s) in a saturated solution can be decreased by:
a. Adding $\mathrm{Na}_{2} \mathrm{CO}_{3}$
b. Adding a strong acid
c. Adding CaCl_{2}
d. Adding more CaCO_{3}
(s).
7. Fill in the table given below:

Unit cell	Simple cube	Body centered cube	Face-centered cube	Hexagonal unit cell
Number of particles inside the unit cell				
The coordination number				
Relative packing efficiency				
Relative Density				

8. a. What are the structural components that exist in a compound for hydrogen bonding to take place?

Ans:

\qquad , \qquad or \qquad .
b. The intermolecular forces that exist between nonpolar molecules are called \qquad .
c. The intermolecular forces that exist between polar molecules are called \qquad and
\qquad -.
9. What are the forces of attraction between the lattice points of a crystalline solid made of:
a. MgCl_{2}
b. SO_{2} (bent geometry)
c. Copper
d. NH_{3} (pyramidal)
e. KBr
f. CO_{2} (linear)
10) a. What is the mass of one mole of cobalt atoms in grams? Ans: \qquad
b. What is the mass of one cobalt atom in amu? Ans:
c. What is the mass of one cobalt atom in grams? Show the set-up:

Ans: \qquad
11. a. Define 'solution': \qquad .
b. Is air a compound, an element, or a solution? \qquad
c. If you combine sand and water, are you preparing a new element, a new compound, or a solution? \qquad . Explain your answer. \qquad
12. Write the chemical formulas of the following compounds:
a. sodium nitride \qquad b. cobaltous phosphide \qquad
c. nickel (II) bisulfide \qquad d. Antimony (III) bisulfite \qquad
e. lead (II) thiocyanate \qquad f. Aluminum thiosulfate \qquad
13. How many moles of $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ contain 7.03×10^{4} carbon atoms? setup:

Answer: \qquad
14. a. Explain how particles of a hydrophobic sol remain dispersed without precipitating.
b. Heating may cause a hydrophobic sol to coagulate. Why? \qquad
15. List three methods for coagulating a hydrophobic colloid.
a.
b. \qquad
c. \qquad
16. a. What kind of particles (atoms, molecules, cations, anions, or cations and anions) may occupy the lattice points in each of the crystalline solids given below.
b.Give one or two examples of an element or a compound that may exhibit each type of crystalline solids.

Type of crystalline solid	metallic crystal	ionic crystal	covalent network crystal	molecular crystal
Kind of particles				
Give one or two examples of an element or a compound.				

17. Which of the 0.010 m solution given below :
$\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (alcohol), $\mathrm{HCN}, \mathrm{NaOH},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
would have:
a. The highest boiling point \qquad
b. The lowest freezing point. \qquad
Explain your answer. \qquad
18. a) Define :
i. critical temperature:
ii. normal boiling point:
b. Draw a typical vapor pressure-temperature phase diagram for water. Label the axes and the regions on the diagram where $\mathrm{H}_{2} \mathrm{O}$ is expected to be in the solid, liquid, and gaseous state. Indicate on the diagram the normal boiling point, the normal freezing point, the triple point and the critical temperature.
19. What is the term used for a colloidal dispersion of : a. solid dispersed in liquid \qquad b. gas dispersed in liquid \qquad
c. liquid dispersed in liquid \qquad d. solid dispersed in gas \qquad
e. liquid dispersed in gas \qquad f. gas dispersed in solid \qquad
20. A. What is the approximate size range of colloidal particles in nm (nanometer)? \qquad
B. List five characteristic properties of colloids:
a.
b.
c.
d.
e.
21. Circle any solution that may be considered as a buffer. Justify your answer by listing all particles present in the solution after the reaction goes to completion, if any.

Particles present after reaction

a. One mole ammonium fluoride plus one mole of HBr .
a. \qquad
b. One mole of formic acid, HCHO_{2}, plus 0.5 mole of KOH .
b. \qquad
c. One mole of ammonia plus one mole of LiOH .
c. \qquad
d. One mole of formic acid, HCHO_{2}, plus one mole of HCl .
d. \qquad
22. a. Give the equation that shows the relationship between K_{p} and K_{C}. Define ' n ' given in your equation.
Answer:
b. The equilibrium reaction given below is exothermic.

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g})
$$

Circle any factor given below that will cause the above equilibrium to shift to the right.
a. Removal of ' A '.
b. The addition of 'D'
c. Removal of 'C'.
d. Increasing the temperature
e. Increasing the volume of the container.
23. Which of the molecules given below is nonpolar?
a. CH_{4} (tetrahedral)
b. PF_{3} (pyramidal)
c. HBr
d. $\mathrm{H}_{2} \mathrm{~S}$ (bent)

24 What is the solubility product expression, K_{sp}, for $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right) 2$?
Answer:
25. How many moles of chlorine atoms are needed to combine with 28.88 moles of oxygen atoms to produce $\mathrm{Cl}_{2} \mathrm{O}_{7}$?
Setup:
26. A. Define:
a. Electronegativity:
b. Electron affinity
c. ionization energy:
B. Give the general trend for the variation of the above properties by filling in the table given below:

	Electronega- tivity	Electron affinity	Ionization energy	Metallic property
From left to right across a period				
Down a group				

27. A. Give the definitions of acids, bases, and acid-base reactions by filling in the table below:

	An acid	A base	An acid-base reaction
According to Arrhenius			
According to Bronsted-Lowry			
According to Lewis			

B. i. What is the conjugate acid for NH_{3}. \qquad
ii. What is the conjugate base for NH_{3} \qquad
iii. What is the conjugate acid for $\mathrm{H}_{2} \mathrm{O}$. \qquad
iv. What is the conjugate base for $\mathrm{H}_{2} \mathrm{O}$. \qquad
28. a) When heat is added to a mixture of ice and water at $0^{\circ} \mathrm{C}$, the temperature remains unchanged for a while. Why?
b. When will the temperature of the water start to increase? \qquad
29. a. Is the pressure of the atmosphere higher on the mountain or in the valley? \qquad .
b. The higher the external pressure (atmospheric pressure), the \qquad the boiling point of a liquid.
c. The higher the temperature, the \qquad the vapor pressure of a liquid.
d. The stronger the intermolecular forces, the \qquad the normal boiling point.
30. What factor changes the numerical value of the equilibrium constant, K , for a particular reaction? \qquad .
31. How are real gases different from ideal gases?
a.
b. \qquad
c. \qquad
32. The behavior of a real gas may approach that of an ideal gas at a temperature
(high, or low)
and a \qquad
33. Balance the following equations:
a.
$\mathrm{C}_{7} \mathrm{H}_{14}$
O_{2}
$\mathrm{CO}_{2}+$
$\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaOH}$
34. A. A n ion-exchange (double-displacement) reaction may go to completion due to the formation of any of the following three classes of compounds:
a. \qquad b. \qquad c. \qquad
B. In a double-displacement reaction, formation of which of the compounds listed below would
nOt necessarily lead to a chemical change? (Hint: You must memorize the solubility rules and the list of strong acids and bases)
a. CO_{2}
b. NH_{3}
c. AgBr
d. HCHO_{2}
e. $\mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{Co}(\mathrm{OH})_{3}$
g. PbCl_{2}
h. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. In a double-displacement reaction, formation of which of the compounds listed below would lead to a chemical change? (Hint: You must memorize the solubility rules and the list of strong acids and bases)
a. HNO_{3}
b. LiOH
c. $\mathrm{K}_{3} \mathrm{PO}_{4}$
d. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
e. BaSO_{4}
35. Name the following acids:
a. HIO_{2}
b. HI \qquad
c. HBrO \qquad d. HCN
f. HBrO_{3} \qquad
36. The molar solubility of $\mathrm{CaF}_{2}(\mathrm{~s})$ in a saturated solution can be increased by adding:
a. CaCl_{2}
b. NaF
c. HBr
d. none of these
(Hint: You need to write the equilibrium equation for the solubility of CaF_{2} given above)
37. When barium chloride is added to a saturated solution of $\mathrm{BaSO}_{4}(\mathrm{~s})$, which of the following will result?(Hint: Write the equilibrium equation for the solubility of BaSO_{4} (s).)
a. The concentration of $\mathrm{SO}_{4}{ }^{2-}$ will increase.
b. The concentration of Ba^{2+} in solution will not change.
c. The added BaCl_{2} will not dissolve and will settle to the bottom of the container.
d. More BaSO_{4} (s) will precipitate.
e. All of the above will take place.
38. A mixture containing $25.53 \mathrm{~g} \mathrm{CaCl}_{2}$ and $19.38 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ is allowed to react according to the reaction given below:
(molar mass: $\mathrm{AlCl}_{3}=133.5, \mathrm{Na}_{2} \mathrm{CO}_{3}=106, \mathrm{NaCl}=58.5, \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}=234$)
$2 \mathrm{AlCl}_{3}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 6 \mathrm{NaCl}+\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
a. How many grams of NaCl are produced?

Setup:

Answer: 21.4 g NaCl
b. Find the mass of any reacted AlCl_{3} or $\mathrm{Na}_{2} \mathrm{CO}_{3}$ assuming 100% yield.

Setup:

Answer: 9.23 g
39. How many grams of oxalic acids, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, are required to completely neutralize 35.0 ml of 0.670 M NaOH ? (molar mass: $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=90.0, \mathrm{NaOH}=40.0, \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=134.0, \mathrm{H}_{2} \mathrm{O}=18.0$) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} \rightarrow \quad \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Setup:

Answer: 1.06 g
40. What is the mole fraction of ethylene glycol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$, in 5.55 m ethylene glycol solution? (molar mass of ethylene glycol $=62.0, \mathrm{H}_{2} \mathrm{O}=18.0$) Setup:
41. The following equilibrium was achieved in a 3.00 liter container.
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
At equilibrium, there were 0.20 mole $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}), 0.45$ mole $^{\mathrm{NH}_{3}}(\mathrm{~g})$, and 2.11 mole $\mathrm{H}_{2} \mathrm{~S}$ (g). Calculate K_{C} under these conditions.
Setup:

Answer: 0.11
42. The density of an unknown gas is 2.89 g/liter at $33^{\circ} \mathrm{C}$ and 745 torr. Calculate the molar mass of the unknown gas. ($\mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$)
Setup:

Answer: $74.0 \mathrm{~g} / \mathrm{mole}$
43. For the equilibrium:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

at $1500{ }^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{C}}$ is 5.67 . What is K_{p} for the equilibrium at $1500{ }^{\circ} \mathrm{C}$?
Setup:

Answer: 825
44. For the equilibrium:

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})_{-}
$$

at $275^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}$ is 1.14×10^{3}. What is K_{C} for the equilibrium at $275^{\circ} \mathrm{C}$? Setup:

Answer: 0.0125
45. What is the molar solubility of MgF_{2} in a 0.20 M NaF ? ($\mathrm{K}_{\text {sp }}$ for $\mathrm{MgF}_{2}=8.0 \times 10^{-8}$) (Hint: Write the equilibrium equation for the solubility of MgF_{2})
Setup:

Answer: $2.0 \times 10^{-6} \mathrm{M}$
46. What is the pH of a $0.0030 \mathrm{M} \mathrm{HNO}_{3}$ solution?

Setup:
47. What is the $\left[\mathrm{H}^{+}\right]$of a solution which is $0.15 \mathrm{M} \mathrm{HNO}_{2}$ and $0.75 \mathrm{M} \mathrm{NaNO}_{2}$?
(K a for $\mathrm{HNO}_{2}=4.5 \times 10^{-4}$)
Setup:

$$
\text { Answer: } 9.0 \times 10^{-5} \mathrm{M}
$$

48. What is the $\left[\mathrm{OH}^{-}\right]$of a solution which is $0.080 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ and $0.32 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2} \mathrm{Cl}$?
$\left[\mathrm{K}_{\mathrm{b}}\right.$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is $\left.7.4 \times 10^{-4}\right]$
Setup:

Answer: $1.9 \times 10^{-4} \mathrm{M}$
49. What is the concentration of the H^{+}ion in a 0.30 M HCN ? (Ka for $\mathrm{HCN}=4.0 \times 10^{-10}$) Setup:

Answer: $1.1 \times 10^{-5} \mathrm{M}$

50. Draw the Lewis structure (electron-dot structure) for the following molecules and ions:
a. CO_{2}
b. $\mathrm{PO}_{3}{ }^{3-}$
c. $\mathrm{CO}_{3}{ }^{2-}$
d. $\mathrm{H} \underline{\mathrm{C}} \mathrm{N}$
(C is the central atom)
51. The addition of $8.83 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (a nonionizing compound) to a 125 ml of water at $23^{\circ} \mathrm{C}$ resulted in 143 ml solution. (The density of water at $23^{\circ} \mathrm{C}$ is $1.00 \mathrm{~g} / \mathrm{ml}$; molar mass: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=342.0, \mathrm{H}_{2} \mathrm{O}=18.0$)
a. Calculate the molarity of the solution. Setup:

Answer: 0.181 M

b. Calculate the molality of the solution. Setup:

Answer: 0. 206
c. Find the freezing point of the solution given above. (K_{f} for water $=1.86{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$) Setup:

Answer: $-0.384{ }^{\circ} \mathrm{C}$
52. Consider the following equilibria:

$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$	$\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$	$\mathrm{Ka} 1=4.2 \times 10^{-7}$
$\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$	$\rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{2-}$	$\mathrm{K} a 2=4.2 \times 10^{-11}$

a. What is the hydrogen ion concentration, $\left[\mathrm{H}^{+}\right]$, in a 0.300 M solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$? Setup:

Answer: $3.5 \times 10^{-4} \mathrm{M}$
b. What the carbonate ion concentration, $\left[\mathrm{CO}_{3}{ }^{2-}\right]$, in the above $0.300 \mathrm{M}_{2} \mathrm{CO}_{3}$?

Answer: $4.2 \times 10^{-11} \mathrm{M}$
53. The pH of a 0.20 M weak monoprotic acid, HX , is 4.60 . Calculate the ionization constant, K_{a}, for this acid.
Setup:

Answer: 3.0×10^{-9}
54. What would be the ionization constant, K_{a}, of a weak monoprotic acid, HX , if it is 5.0% ionized in a 0.18 M solution?
Setup:

Answer: 4.7×10^{-4}
55. A compound contains 1.55 g phosphorus and 1.20 g oxygen. Calculate the simplest formula of the compound.
Setup:

Answer: $\mathrm{P}_{2} \mathrm{O}_{3}$
56. Calculate the molarity of a solution made by diluting 8.00 ml of $15.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ to a 0.500 L . Setup:

Answer:0.240 M
57. What would be the H^{+}concentration of a solution resulting from mixing 35.0 ml of 0.20 M HCl and 35.0 ml of 0.15 M NaOH ?
Setup:

Answer: 0.024 M
58. What is the mass of $\mathrm{CO}_{2}(\mathrm{~g})$ collected in a 580 ml flask at $50^{\circ} \mathrm{C}$ and 1.50 atm ?
($\mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$)
Setup:

Answer: 1.44 g
59. What is the density of $\mathrm{NH}_{3}(\mathrm{~g})$ at $100^{\circ} \mathrm{C}$ and 1.35 atm ? ($\mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}$) Setup:
60. Consider the following reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a. What volume of oxygen gas is required for the complete combustion of 15.0 L of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$, if all gases are measured at the same temperature and pressure?
Setup:

Answer: 52.5 L
b. What volume of oxygen gas is required for the complete combustion of 15.0 L of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$, if all gases are measured at STP condition?
Setup:

Answer: 52.5 L
61. How many grams of $\mathrm{Fe}(\mathrm{s})$ are needed to produce 100 . L of $\mathrm{H}_{2}(\mathrm{~g})$, measured at STP?
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
(molar mass: $\mathrm{Fe}=55.8,=231.4, \mathrm{H}_{2} \mathrm{O}=18.0, \mathrm{H}_{2}=2.00$)
Setup:

Answer: 187 g Fe
62. 350 ml of $\mathrm{Ar}(\mathrm{g})$ at $30^{\circ} \mathrm{C}$ and 1.50 atm are mixed with 540 ml of $\mathrm{N}_{2}(\mathrm{~g})$ at $50^{\circ} \mathrm{C}$ and 0.80 atm. The two gases do not react. What would be the total pressure, if the two gases were transferred to a 2.50 L flask at $80^{\circ} \mathrm{C}$. ($\mathrm{R}=0.0821 \mathrm{~L} . a t m / \mathrm{mol} . \mathrm{K}$; molar mass: $\mathrm{Ar}=39.95, \mathrm{~N}_{2}=28.0$) Setup:

Answer: 0.435 atm
63. A mixture of 40.0 g oxygen gas and 40.0 g helium gas exerts a total pressure of 0.900 atm . What is the partial pressure of the oxygen gas? (molar mass of $\mathrm{O}_{2}=32.0, \mathrm{He}=4.00$) Setup:

