Worksheet: Buffer
Name
$\overline{\text { Last }}$ first

1. Define: Buffer solution
2. How will the pH of a buffer solution change if we add a small amount of water? (increase, decrease, or remain the same)
3. Consider the table given below, write a balanced chemical equation for any reaction taking place between solute particles. Then write the formulas of the major particles present (just as you would for a net-ionic equation) in each of the following solutions below. Decide on which of the solutions below would show a buffer action.

	Particles present	Is it a buffer? (Yes or No)
$\mathrm{Na} 2 \mathrm{SO} 3^{\text {KHSO4 }}$		
NaF		
Equal volumes of $\underline{\mathbf{0 . 1 0 ~ M}} \mathrm{HCN}$ and $\underline{\mathbf{0 . 0 5}} \mathrm{M} \mathrm{NaOH}$		
Equation:		
Equal volumes of $\underline{\mathbf{0 . 1 0 ~ M}} \mathrm{NaOH}$ and $\underline{\mathbf{0 . 0 5} \mathrm{M}} \mathrm{H}_{2} \mathrm{CO} 3$ Equation:		
NaHS		

Equal volumes of $\underline{\mathbf{0 . 1 0 ~ M}} \mathrm{HNO}_{3}$ and $\underline{\mathbf{0 . 1 0} \mathrm{M}} \mathrm{NH}_{3}(\mathrm{aq})$ equation:		
Equal volumes of $\underline{\mathbf{0 . 1 0 ~ M}} \mathrm{NH}_{3}$ and $\underline{\mathbf{0 . 0 5} \mathrm{M}} \mathrm{HBr}$ Equation:		
Equal volumes of $\underline{\mathbf{0 . 1 0} \mathrm{M}} \mathrm{H}_{2} \mathrm{C} 2 \mathrm{O} 4$ and $\underline{\mathbf{0 . 1 0} \mathrm{M}} \mathrm{KOH}$ Equation:		

