WORKSHEET:SOLUTIONS AND COLLIGATIVE PROPERTIES

SET A:

1. Find the molarity of all ions in a solution that contains 0.165 moles of aluminum chloride in 820 ml solution.

Answer: $\left[\mathrm{Al}^{3+}\right]=0.201 \mathrm{M},\left(\mathrm{Cl}^{-}\right]=0.603 \mathrm{M}$.
2. Find the molarity of each ion present after mixing 27 ml of $0.25 \mathrm{M} \mathrm{HNO}_{3}$ with 36 ml of $0.42 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (Note: There is no reaction taking place.)

Answer: $\left[\mathrm{H}^{+}\right]=0.11 \mathrm{M},\left[\mathrm{NO}_{3}{ }^{-}\right]=0.59 \mathrm{M},\left[\mathrm{Ca}^{2+}\right]=0.24 \mathrm{M}$. 3. Find the molarity of each ion present after mixing 35 ml of $0.42 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ with 27 ml of $0.17 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$.

$$
\text { Answer: }\left[\mathrm{K}^{+}\right]=0.71 \mathrm{M},\left[\mathrm{SO}_{4}^{2-}\right]=0.24 \mathrm{M},\left[\mathrm{PO}^{3-}\right]=0.074 \mathrm{M} .
$$

4. Calculate the concentration of each ion and the mass of any precipitate when a 0.300 mole of aluminum hydroxide is added to 50.0 ml of 2.5 M nitric acid solution (Assume that there is no volume change upon the addition of the aluminum hydroxide to the solution).
Hint: Write a balanced equation for the reaction taking place.
Answer: $20 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$ left over, $\left[\mathrm{Al}^{3+}\right]=0.83 \mathrm{M},\left[\mathrm{NO}_{3}{ }^{-}\right]=2.5 \mathrm{M}$
5. A solution consists of 3.88 g benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, and 2.45 g toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$. The vapor pressure of pure benzene at $20 .{ }^{\circ} \mathrm{C}$ is 75 mm Hg and that of toluene at $20.0^{\circ} \mathrm{C}$ is 22 mm Hg . Assume that Raoult's law holds for each component of the solution, calculate the mole fraction of benzene in the vapor. (molar mass of benzene $=78.0 \mathrm{~g} / \mathrm{mole}$ and toluene $=92.0 \mathrm{~g} / \mathrm{mole}$.)

Answer $=0.87$
6. The freezing point of a glucose solution ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$;molar mass $=180.0 \mathrm{~g} / \mathrm{mole}$) is $-10.3{ }^{\circ} \mathrm{C}$. The density of the solution is $1.50 \mathrm{~g} / \mathrm{ml}$. What is the molarity of the glucose solution? (K_{f} for water is $1.86{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$)

Answer: 4.16 mole/L
7. What is the normal boiling point of a 2.70 M solution of KBr that has a density of $1.80 \mathrm{~g} / \mathrm{ml}$? (K_{B} for $\mathrm{H}_{2} \mathrm{O}$ is $0.512{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$ Answer=: $101.9^{\circ} \mathrm{C}$
8. 28.00 ml of 0.670 M potassium carbonate solution is mixed with 15.00 ml of 0.940 M cobalt(III) chloride
a. Write a balanced equation for the reaction.
b. Write the total-ionic and net-ionic equations for the above reaction.

Total ionic:
Net-ionic:
c. Give the name and mass of any precipitate(s)that may have formed.

Answer: 1.87 g of $\mathrm{Co}_{2}(\mathrm{CO} 3)_{3}$ precipitate.
Calculate the molar concentration of each ion remaining in solution after the reaction is complete.
Answer:concentration of potassium ions $=0.874 \mathrm{M}$,
concentration of cobalt (III) ions $=0.0372 \mathrm{M}$
concentration of carbonate ions $=0 \mathrm{M}$
concentration of chloride ions $=0.986 \mathrm{M}$

SET B:

1. A solution that contains 12.6 g of a nonvolatile nondissociating solute in 400 g of benzene freezes at 3.6 ${ }^{\circ} \mathrm{C}$. The normal freezing point of benzene is $5.5^{\circ} \mathrm{C}$. What is the molar mass of the solute? (K_{F} for benzene $=4.96{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$)

Answer: $82 \mathrm{~g} / \mathrm{mole}$
2. Chloroform and methanol form an ideal solution. The solution boils at $22^{\circ} \mathrm{C}$ and 0.255 atm . At $22{ }^{\circ} \mathrm{C}$, the vapor pressure of pure methanol is 0.192 atm and the vapor pressure of pure chloroform is 0.311 atm . What is the mole fraction of chloroform in the solution?

Answer: 0.529
3. What is the normal boiling point of 1.21 M solution of Cal_{2} that has a density of $1.92 \mathrm{~g} / \mathrm{ml}$? (K_{B} for $\mathrm{H}_{2} \mathrm{O}$ $=0.512{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$ Answer: $101.2^{\circ} \mathrm{C}$
4. Calculate the freezing point of a 36.0% by mass $\mathrm{Na}_{3} \mathrm{PO}_{4}$ solution. (K_{f} for $\mathrm{H}_{2} \mathrm{O}=1.86{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$)

Answer: $-25.5^{\circ} \mathrm{C}$
5. 32.00 ml of 0.311 M aluminum nitrate is mixed with 64.00 ml of 0.177 M sodium carbonate and allowed to react.
a. Write a balanced equation for the reaction.
b. Write total-ionic and net-ionic equations for the above reaction.

Total-ionic:
Net-ionic:
c. Give the name and mass of any precipitate that may have formed.

Answer: 0.884 g of $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ precipitate
d. Calculate the molar concentration of each ion remaining in solution after reaction is complete.

Answer: Concentration of carbonate ions $=0 \mathrm{M}$
Concentration of aluminum ions $=0.0252 \mathrm{M}$
Concentration of nitrate ions $=0.312 \mathrm{M}$
Concentration of sodium ions $=0.236 \mathrm{M}$

SET C:

1. What is the molarity of an aqueous solution of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ that has a normal boiling point of $101.40{ }^{\circ} \mathrm{C}$ and density of $1.68 \mathrm{~g} / \mathrm{ml}$? K_{B} for water is $0.512{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole} .\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$ is a nonvolatile nondissociating solute.)

Answer: 3.07 mole/L
2. Calculate the normal freezing point of a 0.6837 M aqueous solution of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ that has a density of $1.35 \mathrm{~g} / \mathrm{ml}$. ($\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ is a nonvolatile nondissociating solute.) The molal freezing point depression constant of water is $1.86^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$.

Answer: Freezing point $=-1.14{ }^{\circ} \mathrm{C}$
3. Heptane, $\mathrm{C}_{7} \mathrm{H}_{16}$, and octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, form an ideal solution. At $40 .{ }^{\circ} \mathrm{C}$, the vapor pressure of pure heptane is 0.522 atm , and the vapor pressure of pure octane is 0.238 atm . A solution is made of 5.32 g heptane and 8.80 g octane. Calculate the mole fraction of octane in the vapor at the above temperature.

Answer: 0.398
4. What is the molar mass and molecular formula of a nondissociating compound whose empirical formula is $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}$, if 3.84 g of the compound in 500 g benzene give a freezing point depression of $0.307{ }^{\circ} \mathrm{C}$? (The molal freezing point depression constant for benzene is $5.12{ }^{\circ} \mathrm{C} . \mathrm{kg} / \mathrm{mole}$.)

Answer: $128 \mathrm{~g} / \mathrm{mole} ; \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2}$
5. Liquids \mathbf{A} and \mathbf{B} form an ideal solution. The vapor pressure of pure \mathbf{A} is 0.700 atm at the normal boiling point of a solution prepared from 0.250 mole of \mathbf{B} and 0.650 mole of \mathbf{A}. What is the vapor pressure of pure \mathbf{B} at this temperature?

Answer: 1.77 atm
6. A 0.900 L aqueous solution contains 30.0 g of a protein. The osmotic pressure of the solution is 12.7 torr at $25{ }^{\circ} \mathrm{C}$. What is the molar mass of the protein?

Answer: $4.88 \times 10^{4} \mathrm{~g} / \mathrm{mole}$
7. Acetone and methanol form ideal solution. At $25{ }^{\circ} \mathrm{C}$, the vapor pressures of pure acetone and pure methanol are 0.342 atm and 0.188 atm respectively. Calculate the mole fraction of methanol in a solution that boils at $25^{\circ} \mathrm{C}$ and 0.248 atm .

Answer: $X=0.610$

