Name \qquad

FOR ALL EQUILIBRIUM PROBLEMS, YOU MUST:

1) Write all equilibrium equations
2) Write all equilibrium concentrations
3) Write all equilibrium expressions

SET A:

1. a) What is the equilibrium constant expression for the reaction:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \quad \text { Ans: }\left[\mathrm{H}_{2}\right]^{4} /\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}
$$

b) The equilibrium constant, K_{C}, for the reaction:
2 NOCl
$(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is 2.4×10^{-7}

What is the equilibrium constant, K_{C}, for the reaction:
$1 / 3 \mathrm{Cl}_{2}(\mathrm{~g})+2 / 3 \mathrm{NO}(\mathrm{g}) \quad \rightleftharpoons \quad 2 / 3 \mathrm{NOCl}(\mathrm{g})$
Ans: 1.6×10^{2}
c) Given the following equilibrium equations and their corresponding equilibrium constants:

$$
\begin{array}{ll}
2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CH}_{2} \mathrm{CO}(\mathrm{~g}) & \mathrm{Kc}=6.1 \times 10^{8} \tag{g}\\
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \mathrm{Kc}=1.2 \times 10^{14}
\end{array}
$$

Find K_{C} for the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{2} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Setup:

Ans: 7.3×10^{22}
2. A mixture of 9.22 moles of $\mathbf{A}, 10.11$ moles of \mathbf{B}, and 27.83 moles of \mathbf{C} is placed in a one-liter container at a certain temperature. The reaction is allowed to reach equilibrium. At equilibrium the number of moles of \mathbf{B} is 18.32 . Calculate the equilibrium constant for the reaction:
A (g)
2 B (g)
\rightleftharpoons
3 C (g
3. a. At a certain temperature, K_{C} is 4.13×10^{-2} for the equilibrium:
$2 \operatorname{IBr}(\mathrm{~g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
Assume that equilibrium is established at the above temperature by adding only $\mathrm{IBr}(\mathrm{g})$ to the reaction flask. What are the concentrations of $\mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{Br}_{2}(\mathrm{~g})$ in equilibrium with 0.0124 moles/liter of $\mathrm{IBr}(\mathrm{g})$? Setup:

Ans: $2.52 \times 10^{-3} \mathrm{M}$
b. What was the initial concentration of IBr before equilibrium was established?

Setup:

Ans: 0.0174
4. $\quad 0.924$ mole of $\mathbf{A}(\mathrm{g})$ is placed in a 1.00 liter container at $700^{\circ} \mathrm{C}$, where it is 38.8% dissociated when equilibrium was established.
$3 A(\mathrm{~g}) \quad \rightleftharpoons 5 \mathrm{~B}(\mathrm{~g})+2 \mathrm{C}(\mathrm{g})$
What is the value of the equilibrium constant, K_{C}, at the same temperature?
Setup:
5. The equilibrium constant for the reaction:

$$
2 \mathrm{NO}(\mathrm{~g}) \quad \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

is 2.60×10^{-3} at $1100{ }^{\circ} \mathrm{C}$. If 0.820 mole of $\mathrm{NO}(\mathrm{g})$ and 0.223 mole each of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ are mixed in a 1.00 liter container at $1100{ }^{\circ} \mathrm{C}$, what are the concentrations of $\mathrm{NO}(\mathrm{g}), \mathrm{N}_{2}(\mathrm{~g})$, and $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium? Setup:

Ans: $\quad[\mathrm{NO}]=1.15 \mathrm{M}$ $\left[\mathrm{N}_{2}\right]=0.058 \mathrm{M}$ $\left[\mathrm{Cl}_{2}\right]=0.058 \mathrm{M}$

SET B :

1. A mixture of 1.16 mole of $\mathbf{A}, 1.35$ mole of \mathbf{B} and 0.641 mole of \mathbf{C} is placed in a one-liter container at a certain temperature. The reaction was allowed to reach equilibrium. At equilibrium. the number of moles of \mathbf{A} is 1.95. Calculate the equilibrium constant, K_{C}, for the reaction:

Setup:
$2 A(\mathrm{~g}) \rightleftharpoons 2$ B $(\mathrm{g})+\mathbf{C}(\mathrm{g})$

Ans: 0.020
2. 0.822 mole of $\mathrm{SO}_{3}(\mathrm{~g})$ is placed in a 1.00 liter container at $600 \mathrm{~K} .36 .7 \%$ of the $\mathrm{SO}_{3}(\mathrm{~g})$ are decomposed when equilibrium is established.
$2 \mathrm{SO}_{3}(\mathrm{~g}) \quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
What is the value of the equilibrium constant, K_{C}, at the same temperature? Setup:
3. For the equilibrium:

$$
2 \mathrm{BrCl}(\mathrm{~g}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

at $205^{\circ} \mathrm{C}$, the equilibrium constant, K_{C}, is 0.143 . If 1.34 moles each of $\mathrm{Br}_{2}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ are introduced in a container which has a volume of 11.0 liters and allowed to reach equilibrium at $205^{\circ} \mathrm{C}$, what would be the concentrations of $\mathrm{Br}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g})$, and $\mathrm{BrCl}(\mathrm{g})$ at equilibrium? Setup:

Ans: $\quad\left[\mathrm{Cl}_{2}\right]=0.0529 \mathrm{M}$
$\left[\mathrm{Br}_{2}\right]=0.0529 \mathrm{M}$
$[\mathrm{BrCl}]=0.139 \mathrm{M}$
4. a. What is the numerical value of the equilibrium constant, K_{C}, for the reaction:

$$
3 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 6 \mathrm{NO}(\mathrm{~g})
$$

if the equilibrium constant for the reaction:
$2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is 3.5×10^{-6}
Setup:

Ans: 2.3×10^{16}
b) What is the equilibrium constant expression for the reaction:

$$
2 \mathrm{Ni}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{NiO}(\mathrm{~s})
$$

Ans: $\mathrm{K}=[\mathrm{CO}]^{2} /[\mathrm{CO} 2]^{2}$
5. For the reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{3}(\mathrm{~g})
$$

at $923{ }^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{C}}$ is 42.5 . If 0.0500 mole of $\mathrm{NO}_{2}(\mathrm{~g}), 0.122$ mole of $\mathrm{O}_{2}(\mathrm{~g})$ and 0.300 mole of $\mathrm{NO}_{3}(\mathrm{~g})$ are mixed in a 1.00 liter container at $923^{\circ} \mathrm{C}$, in what direction will the reaction proceed?(Show your calculation to prove that your answer is not a guess.)
Setup:

Answer: $Q_{C}>K c$ (The reaction will proceed spontaneously to the left)

SET C:

1. For the equilibrium:

$$
2 \mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

at 300 K , the equilibrium constant, K_{C}, is 0.185 . If 1.45 moles each of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ are introduced in a container that has a volume of 6.00 liters and allowed to reach equilibrium at 300 K , what are the concentrations of $\mathrm{N}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$,and $\mathrm{NO}(\mathrm{g})$ at equilibrium?
Setup:

Ans: $\quad\left[\mathrm{N}_{2}\right]=0.112 \mathrm{M}$
$\left[\mathrm{O}_{2}\right]=0.112 \mathrm{M}$
[NO] $=0.260 \mathrm{M}$
2. $\quad 1.87$ mole of $\mathbf{A}(\mathrm{g})$ are placed in a 1.00 liter container at $700 \mathrm{~K} . \quad 43.3 \%$ of $\mathbf{A}(\mathrm{g})$ had decomposed when the reaction reached equilibrium .

$$
2 \mathbf{A}(\mathrm{~g}) \quad \rightleftharpoons \quad 3 \mathbf{B}(\mathrm{~g})+\mathbf{C}(\mathrm{g})
$$

What is the value of the equilibrium constant, K_{C}, at the same temperature? Setup:
3. a. What is the equilibrium constant expression for the reaction:
$2 \mathrm{Fe}(\mathrm{s})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+2 \mathrm{FeO}(\mathrm{s})$
Ans: $\mathrm{K}=\left[\mathrm{NO}^{2} /\left[\mathrm{NO}_{2}\right]^{2}\right.$
b. What is the numerical value of the equilibrium constant, K_{C}, for the reaction:
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
if the equilibrium constant for the reaction given below is is 2.7×10^{-3} ?
$1 / 2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
Setup:

Ans: 1.4×10^{5}
4. A mixture of 3.31 moles of $\mathbf{A}, 4.33$ moles of \mathbf{B}, and 5.95 moles of \mathbf{C} is placed in a one-liter container at a certain temperature. The reaction was allowed to reach equilibrium. At equilibrium, the number of moles of \mathbf{B} is 6.16 . Calculate the equilibrium constant, K_{C}, for the reaction:

$$
A(\mathrm{~g}) \rightleftharpoons 3 \mathbf{B}(\mathrm{~g})+2 \mathbf{C} \mathrm{~g})
$$

Setup:

Ans: 4.5×10^{3}
-7-
5. For the reaction:
$2 \mathbf{A}(\mathrm{~g}) \rightleftharpoons \mathbf{B}(\mathrm{g})+\mathbf{C}(\mathrm{g})$
at $900^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{C}}$ is 1.40×10^{-3}. If 0.780 mole of $\mathbf{A}(\mathrm{g})$ and 0.244 mole each of $\mathbf{B}(\mathrm{g})$ and $\mathbf{C}(\mathrm{g})$ are mixed in a 1.00 liter container at $900{ }^{\circ} \mathrm{C}$, what are the concentrations of \mathbf{A}, \mathbf{B}, and \mathbf{C} at equilibrium?

Setup:

Ans: $\quad[\mathbf{A}]=1.180 \mathrm{M}$
$[B]=0.044 \mathrm{M}$
$[C]=0.044 \mathrm{M}$

