WORKSHEET: SOLUTION EQUILIBRIUM (Weak acids and bases, buffers,

Polyprotic acids, and Hydrolysis.) **<u>SET A:</u>**

1. 40.00 ml of 0.350 M CH₃NH₂ is titrated with 0.280 M HCl until the end point is reached . Calculate the pH of the solution at the end point.(K_b for CH₃NH₂= 5.0 × 10⁻⁴) Setup:

2. How many moles of HNO_2 must be added to a 1.00 liter of 0.370 M $NaNO_2$ to give a buffer of

pH= 4.20? (Ignore any volume change due to the addition of HNO₂) (K_a for HNO₂ is 4.5×10^{-4}). Setup:

Answer: 0.052 moles

3. a. Is NaHCO₃ (aq) acidic, basic, or neutral ?You must show your work to justify your answer. (K_{a1} for H₂CO₃ = 4.3 x 10-7, Ka₂ for HCO₃⁻ = 4.8 x 10⁻¹¹) Setup:

Answer: K_b for HCO₃⁻ is larger than Ka₂ for HCO₃^{-,} NaHCO₃ (aq) is basic.

b. Is NaHCO $_3$ (aq) a buffer? (You must show your work to prove that your answer is not a guess.) Setup:

Answer: Yes

4. How many moles of NaOH must be added to a 1.00 liter of 0.230 M benzoic acid, $HC_7H_5O_2$, to produce a solution of pH= 4.50? (Ka for $HC_7H_5O_2 = 6.3 \times 10^{-5}$) Setup:

Answer: 0.15 mole

5. The [S²⁻] concentration of a 0.150 M H₂S is adjusted to a value of 4.18 x 10⁻⁸ moles/liter. What is the [H⁺] concentration? (K_{a1} for H₂S= 8.9 x 10⁻⁸, K_{a2} for HS⁻ is 1.2 x 10⁻¹³) Setup:

Answer: 1.9 x 10⁻⁷ M

6. What is the [H⁺] concentration of a solution made by adding 35.00 ml of 0.660 M C₆H₅NH₂ to 40.00 ml of 0.420 M HCl? (K_b for C₆H₅NH₂ is 4.6×10^{-7}) Setup:

Answer: 5.9 x 10⁻⁸ M

7. Predict whether the following solutions are acidic, basic, or neutral. Write the equilibrium equations, and all calculations if needed, to justify your answer. (K_b for NH₃ is 1.8 x 10⁻⁵, K_a for HCIO is 3.5 x 10⁻⁸) a. NH₄CIO

Setup:

Answer: K_b for CIO⁻ > Ka for NH₄ ⁺ , Basic

b. NaNO₂ Setup:

Answer: Basic

c. Ni(NO₃)₃ Setup:

Answer: Acidic

SET B:

1. How many moles of HCHO₂ must be added to a 1.00 liter of 0.400 M NaCHO₂ to give a buffer of pH= 3.60? Ignore any volume change due to the addition of HCHO₂. (Ka for HCHO₂=1.8 $\times 10^{-4}$) Setup:

2. a. Is Na_2HPO_4 (aq) a buffer? You must show your work to prove that your answer is not a guess. Setup:

Answer: Yes

b. Is Na₂HPO₄ acidic, basic, or neutral? You must show your work to justify your answer. Ka₃ for HPO₄²⁻ is 1.00×10^{-12} , K_{a2} for H₂PO₄⁻ is 6.2×10^{-8} Setup:

Answer: K_b (for HPO₄²⁻) > K_{a3} (for HPO₄²⁻), Basic

3. What is the [H⁺] concentration of a solution made by titrating 30.00 ml of 0.7200 M C₆H₅NH₂ with 0.2500 M HCl until the equivalence point is reached? K_b for C₆H₅NH₂ is 4.6 x 10⁻⁷. Setup:

Answer: 6.4 x 10⁻⁵

4. Predict whether each of the following solutions is acidic, basic, or neutral. Write the equilibrium equations, and all calculations if needed, to justify your answer. K_b for NH₃= 1.8 x 10⁻⁵, K_a for HCHO₂ is 1.8 x 10⁻⁴.

a. NH₄CHO₂ Setup:

Answer: K_a (for NH₄⁺) > Kb (for CHO₂⁻) , Acidic

b. N_{a2}S Setup:

Answer: Basic

c. Cr (NO₃)₃ Setup:

Answer: Acidic

5. The $C_6H_6O_6^{2^-}$, ascorbate ion, concentration of a 0.270 M ascorbic acid, is adjusted to a value of 8.5 x 10^{-8} mole/liter. What is the [H⁺] concentration? K_{a1} for H₂C₆H₆O₆ is 7.9 x 10^{-5} and K_{a2} for HC₆H₆O₆⁻ is 1.6 x 10^{-12} . Setup:

Answer: 2.0 x 10⁻⁵ M

6. How many moles of NaOH should be added to a 1.00 liter of 0.190 M HNO₂ to produce a solution of

pH= 4.80? Assume there is no change in volume upon the addition of NaOH. K_a for HNO₂ is 4.5 x 10⁻⁴. Setup:

Answer: 0.18 mole

7) What is the pH of a solution made by mixing 25.00 ml of 0.440 M CH₃NH₃Cl and 37.00 ml of 0.200 M NaOH? K_b for CH₃NH₂ is 5.0×10^{-4} . Setup:

Answer: pH= 11.00

SET C:

1. The oxalate ion concentration, C₂O₄ ²⁻, of 0.20 M H₂C₂O₄ is adjusted to a value of 3.00×10^{-3} M. What is the [H⁺] ion concentration in the solution? K_{a1} for H₂C₂O₄ is 5.6 x 10⁻² and K_{a2} for HC₂O₄⁻ is 5.1 x 10⁻⁵. Setup:

Answer: 1.4 x 10⁻² M

2. Predict whether each of the following solutions is acidic, basic, or neutral. Write the equilibrium equations , and all calculations if needed, to justify your answer. Kb for NH₃ is 1.8×10^{-5} , K_a for HCIO is 3.5×10^{-8} .

a. NH₄ClO Setup:

Answer: K_b for $CIO^- > K_a$ for NH_4^+ . Basic

b. KCNO Setup:

Answer: Basic

c. Ni(ClO₄)₃ Setup:

Answer: Acidic

3. What is the pH at the equivalence point when 27.0 ml of 0.200 M CH_3NH_2 are titrated with 0.350 M HCl? K_b for CH_3NH_2 is 4.4 x 10⁻⁴. Setup:

Answer: 5.76

4. How many ml of 0.250 M HF (aq) must be added to 500.0 ml of 0.300 M NaF to give a buffer of pH= 3.50? K_a for HF is 6.8 x 10 $^{-4}$. Setup:

Answer: 282 ml

5. Find the pH of a solution made by mixing 25.0 ml of 0.0650 M benzylamine, $C_7H_7NH_2$, and 13.9 ml of 0.0500 M HCl. K_b for $C_7H_7NH_2$ is 4.7 x 10⁻¹⁰. Setup:

Answer: 4.80

6. A chemist wants to prepare a buffer of pH = 4.35. How many milliliters of 0.455 M acetic acid must be added to 465 ml of 0.0941 M NaOH solution to obtain such a buffer? Ka for $HC_2H_3O_2$ is 1.7×10^{-5} . Setup:

Answer: 351 ml

7. a. Is NaHC₂O₄ (aq) a buffer? You must show your work to prove that your answer is not a guess. Setup:

Answer: Yes

b. Is NaHC₂O₄ (aq) acidic, basic, or neutral? K_{a1} for H₂C₂O₄ is 5.6 x 10⁻², K_{a2} for HC₂O₄⁻ is 5.1 x 10⁻⁵. You must show your work to justify your answer. Setup: