WORKSHEET: SOLUTION EQUILIBRIUM (Weak acids and bases, buffers, Polyprotic acids, and Hydrolysis.)
SET A:

1. $\quad 40.00 \mathrm{ml}$ of $0.350 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$ is titrated with 0.280 M HCl until the end point is reached. Calculate the pH of the solution at the end point. (K_{b} for $\mathrm{CH}_{3} \mathrm{NH}_{2}=5.0 \times 10^{-4}$)
Setup:
2. How many moles of HNO_{2} must be added to a 1.00 liter of 0.370 M NaNO 2 to give a buffer of $\mathrm{pH}=4.20$? (Ignore any volume change due to the addition of $\left.\mathrm{HNO}_{2}\right)\left(\mathrm{K}_{\mathrm{a}}\right.$ for HNO_{2} is $\left.4.5 \times 10^{-4}\right)$.
Setup:

Answer: 0.052 moles
3. a. Is $\mathrm{NaHCO}_{3}(\mathrm{aq})$ acidic, basic, or neutral ?You must show your work to justify your answer. (Ka 1 for $\mathrm{H}_{2} \mathrm{CO}_{3}=4.3 \times 10-7, \mathrm{Ka}_{2}$ for $\mathrm{HCO}_{3}^{-}=4.8 \times 10^{-11}$)
Setup:

Answer: K_{b} for HCO_{3}^{-}is larger than Ka_{2} for $\mathrm{HCO}_{3}{ }^{-}, \mathrm{NaHCO}_{3}(\mathrm{aq})$ is basic.
b. Is $\mathrm{NaHCO}_{3}(\mathrm{aq})$ a buffer? (You must show your work to prove that your answer is not a guess.)

Setup:
4. How many moles of NaOH must be added to a 1.00 liter of 0.230 M benzoic acid, $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, to produce a solution of $\mathrm{pH}=4.50$? (Ka for $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}=6.3 \times 10^{-5}$)
Setup:

Answer: 0.15 mole
5. The $\left[\mathrm{S}^{2-}\right]$ concentration of a $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ is adjusted to a value of $4.18 \times 10^{-8} \mathrm{moles} / l i t e r$. What is the $\left[\mathrm{H}^{+}\right]$concentration?
($\mathrm{K}_{\mathrm{a} 1}$ for $\mathrm{H}_{2} \mathrm{~S}=8.9 \times 10^{-8}, \mathrm{~K}_{\mathrm{a} 2}$ for HS^{-}is 1.2×10^{-13})
Setup:
6. What is the $\left[\mathrm{H}^{+}\right]$concentration of a solution made by adding 35.00 ml of $0.660 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ to 40.00 ml of 0.420 M HCl ? (K_{b} for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is 4.6×10^{-7})

Setup:
7. Predict whether the following solutions are acidic, basic, or neutral. Write the equilibrium equations, and all calculations if needed, to justify your answer. (Kb for NH_{3} is 1.8×10^{-5},
Ka_{a} for HClO is 3.5×10^{-8})
a. $\mathrm{NH}_{4} \mathrm{ClO}$

Setup:

$$
\text { Answer: } \quad \mathrm{K}_{\mathrm{b}} \text { for } \mathrm{ClO}^{-}>\mathrm{Ka} \text { for } \mathrm{NH}_{4}^{+} \text {, Basic }
$$

b. NaNO_{2}

Setup:

Answer: Basic
c. $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}$

Setup:

Answer: Acidic

SET B:

1. How many moles of HCHO_{2} must be added to a 1.00 liter of 0.400 M NaCHO 2 to give a buffer of $\mathrm{pH}=$ 3.60? Ignore any volume change due to the addition of HCHO_{2}. (Ka for $\mathrm{HCHO}_{2}=1.8 \times 10^{-4}$)

Setup:
2. a. Is $\mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{aq})$ a buffer? You must show your work to prove that your answer is not a guess. Setup:

Answer: Yes
b. Is $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ acidic, basic, or neutral? You must show your work to justify your answer.
Ka_{3} for $\mathrm{HPO}_{4}{ }^{2-}$ is $1.00 \times 10^{-12}, \mathrm{~K}_{\mathrm{a} 2}$ for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is 6.2×10^{-8}
Setup:

$$
\text { Answer: } \mathrm{K}_{\mathrm{b}}\left(\text { for } \mathrm{HPO}_{4}{ }^{2-}\right)>\mathrm{K}_{\mathrm{a} 3}\left(\text { for } \mathrm{HPO}_{4}{ }^{2-}\right) \text {, Basic }
$$

3. What is the $\left[\mathrm{H}^{+}\right]$concentration of a solution made by titrating 30.00 ml of $0.7200 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ with 0.2500 M HCl until the equivalence point is reached? K_{b} for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is 4.6×10^{-7}.

Setup:
4. Predict whether each of the following solutions is acidic, basic, or neutral. Write the equilibrium equations, and all calculations if needed, to justify your answer. K_{b} for $\mathrm{NH}_{3}=1.8 \times 10^{-5}$, K_{a} for HCHO_{2} is 1.8×10^{-4}.
a. $\mathrm{NH}_{4} \mathrm{CHO}_{2}$

Setup:

$$
\text { Answer: } \mathrm{Ka}\left(\text { for } \mathrm{NH}_{4}^{+}\right)>\mathrm{Kb}\left(\text { for } \mathrm{CHO}_{2}^{-}\right), \text {Acidic }
$$

b. $\mathrm{Na}_{\mathrm{a} 2} \mathrm{~S}$

Setup:

Answer: Basic

c. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$

Setup:
Answer: Acidic
5. The $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{2-}$, ascorbate ion, concentration of a 0.270 M ascorbic acid, is adjusted to a value of 8.5 x 10^{-8} mole/liter. What is the $\left[\mathrm{H}^{+}\right]$concentration? $\mathrm{K}_{\mathrm{a} 1}$ for $\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$ is 7.9×10^{-5} and $\mathrm{K}_{\mathrm{a} 2}$ for $\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{O}_{6}{ }^{-}$is 1.6 x 10^{-12}.
Setup:
6. How many moles of NaOH should be added to a 1.00 liter of 0.190 M HNO 2 to produce a solution of $\mathrm{pH}=4.80$? Assume there is no change in volume upon the addition of $\mathrm{NaOH} . \mathrm{K}_{\mathrm{a}}$ for HNO_{2} is 4.5×10^{-4}. Setup:
7) What is the pH of a solution made by mixing 25.00 ml of $0.440 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ and 37.00 ml of 0.200 M NaOH ? K_{b} for $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is 5.0×10^{-4}.

Setup:

SET C:

1. The oxalate ion concentration, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, of $0.20 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is adjusted to a value of $3.00 \times 10^{-3} \mathrm{M}$. What is the $\left[\mathrm{H}^{+}\right]$ion concentration in the solution? $\mathrm{K}_{\mathrm{a} 1}$ for $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is 5.6×10^{-2} and $\mathrm{K}_{\mathrm{a} 2}$ for $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$is 5.1×10^{-5}.
Setup:

Answer: $1.4 \times 10^{-2} \mathrm{M}$
2. Predict whether each of the following solutions is acidic, basic, or neutral. Write the equilibrium equations, and all calculations if needed, to justify your answer. Kb for NH_{3} is 1.8×10^{-5}, K_{a} for HClO is 3.5×10^{-8}.
a. $\mathrm{NH}_{4} \mathrm{ClO}$

Setup:
b. KCNO

Setup:

$$
\text { Answer: } \mathrm{K}_{\mathrm{b}} \text { for } \mathrm{ClO}^{-}>\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+} \text {. Basic }
$$

Answer: Basic
c. $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{3}$

Setup:
3. What is the pH at the equivalence point when 27.0 ml of $0.200 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}$ are titrated with 0.350 M HCl ? K_{b} for $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is 4.4×10^{-4}.
Setup:

Answer: 5.76
4. How many ml of $0.250 \mathrm{M} \mathrm{HF}(\mathrm{aq})$ must be added to 500.0 ml of 0.300 M NaF to give a buffer of $\mathrm{pH}=3.50 ? \mathrm{Ka}$ for HF is 6.8×10^{-4} Setup:
5. Find the pH of a solution made by mixing 25.0 ml of 0.0650 M benzylamine, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NH}_{2}$, and 13.9 ml of $0.0500 \mathrm{M} \mathrm{HCl} . \mathrm{K}_{\mathrm{b}}$ for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NH}_{2}$ is 4.7×10^{-10}
Setup:
6. A chemist wants to prepare a buffer of $\mathrm{pH}=4.35$. How many milliliters of 0.455 M acetic acid must be added to 465 ml of 0.0941 M NaOH solution to obtain such a buffer? Ka for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is 1.7×10^{-5}. Setup:
7. a. Is $\mathrm{NaHC}_{2} \mathrm{O}_{4}(\mathrm{aq})$ a buffer? You must show your work to prove that your answer is not a guess. Setup:

[^0]
[^0]: Answer: Yes
 b. Is $\mathrm{NaHC}_{2} \mathrm{O}_{4}(\mathrm{aq})$ acidic, basic, or neutral? $\mathrm{K}_{\mathrm{a} 1}$ for $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is 5.6×10^{-2},
 $\mathrm{K}_{\mathrm{a} 2}$ for $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$is 5.1×10^{-5}. You must show your work to justify your answer.
 Setup:

