Intermediate Algebra
 Math 80 ($7^{\text {th }}$ ed.)

Practice Midterm

(Ch. 2-6)
(2.2)

1. Write as an algebraic expression and simplify completely.
a) The perimeter of a rectangle with length $7 x$ and width $2 x-8$.
b) The perimeter of a triangle with sides of length $x, x-2$, and $3 x-8$.
(2.3)
2. Find the amount of money in an account after 3 years if a principal of $\$ 7000$ was invested at 6% interest compounded
a) semiannually
b) quarterly
c) monthly

Use: $A=P\left(1+\frac{r}{n}\right)^{n t}$ Round to the nearest cent.
(2.6)
3. Solve the following equations.
a) $|5 x-6|=-4$
b) $|4 x-3|=11$
(2.7)
4. Solve the following inequalities. Write your answer in interval notation.
a) $|x-6|+4 \leq 9$
b) $|x-6|+4>9$
c) $|x-6|+4<3$
d) $|x-6|+4 \geq 3$
(3.3)
5. Find the intercepts and graph the following equations.
a) $5 x+3 y=15$
b) $4 x-2 y=8$
x-intercept \qquad x-intercept \qquad
y-intercept \qquad

(3.5)
6. Find the equation of the line satisfying the given conditions. Then find the x and y-intercepts Write your answer in the form: $y=m x+b$
a) A line with slope parallel to the line $2 x-3 y=3$ and passing through the point $(6,-1)$.
b) A line with slope perpendicular to the line $y=\frac{1}{2} x+4$ and passing through the point $(1,2)$.
(3.2)
7. Determine whether the graph is the graph of a function and state the domain and range.*
a)

Domain \qquad
Range \qquad
Function? \qquad

b)

Domain \qquad
Range \qquad
Function? \qquad
*You should practice more problems like these! Look in your e-text/textbook. See example 6 on pages 136-137 and work problems 29-40 on page 144.
(3.5)
8. Graph the function $f(x)=-\frac{5}{2} x+4$.

(3.6)
9. Graph the piecewise function:
a) $f(x)=\left\{\begin{array}{lll}-4 x-2 & \text { if } & x<0 \\ x+1 & \text { if } & x \geq 0\end{array}\right.$
b) $g(x)=\left\{\begin{array}{lll}-4 x-2 & \text { if } & x \geq-3 \\ x+1 & \text { if } & x<-3\end{array}\right.$

(4.1)
10. Solve the following system of equations.
a) $\begin{array}{r}3 x+2 y=3 \\ 6 x-4 y=2\end{array}$
$6 x-4 y=2$
b) $\begin{aligned} & x+4 y=19 \\ & 3 x+2 y=17\end{aligned}$
(4.2)
11. Use a system of equations to solve the following problems.
a) Victor bought some large picture frames for $\$ 15$ each and some small picture frames for $\$ 8$ each at a closeout sale. If he bought a total of 22 frames for $\$ 239$, find how many of each type he bought.
b) The Sage Hill Drama department sold 311 tickets for a play. Student tickets cost 50 cents each; non-student tickets cost $\$ 1.50$. If the total receipts were $\$ 385.50$, find how many of each type were sold.

(5.2, 6.3)

12. Simplify. Write your answer using positive exponents only.
a) $\frac{27 x^{2} y^{-5}}{81 x y^{-3}}$
b) $\frac{x^{-2}+x^{-3}}{5+x^{-2}}$
(5.4)
13. Multiply the following polynomials.
a) $(2 a-5)^{2}$
b) $(2 a-5)(2 a+5)$
c) $(6 q-7)\left(2 q^{2}+2 q-3\right)$
(5.7)
14. Factor the following polynomials.
a) $25 x^{4}+20 x^{3}+15 x^{2}$
b) $6 x^{2}+x-15$
c) $176 t-16 t^{2}$
(5.8)
15. A rocket is launched from the ground. The height, h, of the rocket at time t seconds is given by the equation $h(t)=48 t-16 t^{2}$.
a) Find how long it will take the rocket to return to the ground.
b) Determine how long it take the rock to reach a height 36 feet.
(6.3)
16. Simplify the following complex fractions.
a) $\frac{\frac{x+1}{x^{2}-4}}{\frac{x+1}{x+2}-1}$

$$
\text { b) } \frac{\frac{x+6}{x^{2}-36}}{5+\frac{1}{x-6}}
$$

(6.4)
17. Use long division to divide. $\left(3 x^{3}-2 x^{2}-19 x-6\right) \div(3 x+1)$
18. Use synthetic division to divide. $\left(x^{4}+3 x^{3}-5 x+4\right) \div(x+1)$

(6.5)

19. Solvé.
a) $\frac{36}{x^{2}-9}+1=\frac{2 x}{x+3}$
b) $\frac{x^{2}-20}{x^{2}-7 x+12}=\frac{3}{x-3}+\frac{5}{x-4}$
(5.8)
20. The length of a rectangular swimming pool is 10 meters greater than the width. If the area of the pool is 231 square meters, find the dimensions of the pool.

(6.1, 6.2)

Perform the indicated operations. Simplify if possible.
21. a) $\frac{x^{2}+6 x+9}{4 x^{2}+10 x+6} \cdot \frac{2 x^{2}+3 x}{x+3}$
b) $\frac{x+1}{x^{2}+3 x+2} \div \frac{x-1}{x^{2}+4 x+4}$
22. a) $\frac{5}{x^{2}-4}-\frac{3}{x^{2}+4 x+4}$
b) $\frac{6}{x-5}+\frac{x-35}{x^{2}-5 x}-\frac{2}{x}$

Answers:

1. a) $18 x-16$
b) $5 x-10$
2. a) $\$ 8358.37$
b) $\$ 8369.33$
c) $\$ 8376.76$
3. a) no solution
b) $\left\{-2, \frac{7}{2}\right\}$
4. a) $[1,11]$
c) no solution
b) $(-\infty, 1) \cup(11, \infty)$
d) $(-\infty, \infty)$
5. a) x-intercept: $(3,0)$
b) x-intercept: $(2,0)$
y-intercept: $(0,5)$

y-intercept: $(0,-4)$

5
6. a) $y=\frac{2}{3} x-5 ; x$-intercept: $\left(\frac{15}{2}, 0\right) ; y$-intercept: $(0,-5)$
b) $y=-2 x+4 ; x$-intercept: $(2,0) ; y$-intercept: $(0,4)$
7. a) Domain: $(-\infty, \infty)$

Range: $(-\infty, 5]$
Function? yes
b) Domain: $(-\infty,-6] \cup[6, \infty)$

Range: $(-\infty, \infty)$
Function? no
8.

9. a)

b)

10. a) $\left(\frac{2}{3}, \frac{1}{2}\right)$
b) $(3,4)$
11. a) $\mathbf{9}$ large frames and $\mathbf{1 3}$ small frames
b) 81 students and 230 non-students
12. a) $\frac{x}{3 y^{2}}$
b) $\frac{x+1}{x\left(5 x^{2}+1\right)}$
13. a) $4 a^{2}-20 a+25$
b) $4 a^{2}-25$
c) $12 q^{3}-2 q^{2}-32 q+21$ $16 t(11-t)$
14. a) $5 x^{2}\left(5 x^{2}+4 x+3\right)$
b) $(3 x+5)(2 x-3)$
c) $o r$ $-16 t(t-11)$
15. a) 3 seconds
b) 1.5 seconds
16. a) $-\frac{x+1}{x-2}$ or $\frac{x+1}{2-x}$
b) $\frac{1}{5 x-29}$
17. $x^{2}-x-6$
18. $x^{3}+2 x^{2}-2 x-3+\frac{7}{x+1}$
19. a) $\begin{aligned} & x=9 \\ & \text { note: } \\ & x=-3 \text { does not check }\end{aligned}$
b) $x=1$ or $x=7$
20. width: 11m; length: 21 m
21. a) $\frac{x(x+3)}{2(x+1)}$
b) $\frac{x+2}{x-1}$
22. a) $\frac{2(x+8)}{(x+2)^{2}(x-2)}$
b) $\frac{5}{x}$

