OXIDATION NUMBERS

The oxidation number for oxygen is usually -2.

Exceptions: 02 and peroxides

(0--0 bond ==> ex. H_2O_2 , Na_2O_2 , and BaO_2 and etc.)

- The oxidation number of hydrogen is usually +1.
 Exceptions: H₂ and hydrides Ex. NaH, BaH₂, and etc.
- 3. Oxidation numbers of an atom or group of atoms is equal to the charge on the species:
- a. The oxidation number on free elements is zero.

Ex. Eg, Fe, Cr. Mn...etc.

- b. The oxidation number for elements when combined with themselves is zero Ex. H₂, S₈, Br₂,...etc.)
- c. The oxidation number of a monatomic ion is equal to its charge.

ION	OXIDATION NUMBER
K^{1+}	+1
Ca ²⁺	+2
₽e ³ +	+3
s ²⁻	-2

d. The sum of the oxidation numbers of the elements in a compound is equal to zero

e. The sum of the oxidation numbers of the elements in a polyatomic ion is equal to its net charge.

 $5^{\frac{1}{2}} + 6$ e. The sum of the oxidation numbers of the elements in a polyatomic ion is equal to its net charge.

Na ₂ CO ₃ C=+4	FeC ₂ O ₄ C = + 3	Sr.,(PO₄). 5 n = +4	P = +5
HBrO	Zn(BrO3)2	Cu_2SO_3	
BC= +1	Zn=+2 Br=+5	Cu=+1	5= +4