### 1.4 Relations and Functions

A relation is a correspondence between two sets. If $x$ and $y$ are two elements in these sets and if a relation exists between $x$ and $y$, then $x$ corresponds to $y$, or $y$ depends on $x$.

DEFINITION OF A FUNCTION:
Let $X$ and $Y$ two nonempty sets. A function from $X$ into $Y$ is a relation that associates with each element of $X$, exactly one element of $Y$. However, an element of $Y$ may have more than one elements of $X$ associated with it.
That is for each ordered pair ( $x, y$ ), there is exactly one $y$ value for each $x$, but there may be multiple $x$ values for each $y$. The variable $x$ is called the independent variable (also sometimes called the argument of the function), and the variable $y$ is called dependent variable (also sometimes called the image of the function.)

Below is the graph of $y=x^{2}-4 \quad$ (an upward parabola with vertex $(0,-4)$ )
For $y=12$, there are two possible $x$ 's.


## VERTICAL-LINE TEST THEOREM

A set of points in the xy-plane is the graph of a function if and only if (iff), every vertical line intersects the graph in at most one point.
$\boldsymbol{x}=\boldsymbol{y}^{\mathbf{2}}$ is not a function from X into Y , because there is not exactly one $y$ value for each $x$.
Solving for y , you get $\mathrm{y}= \pm \sqrt{x}$
which means there are two possible values for $y$.


This figure is a parabola with vertex at origin, and which axis of symmetry is with the $x$-axis, and opens to the right

## Does this graph pass the vertical lines test?

Can you think of any other equations that are NOT functions of $x$ ? A circle?

## DOMAIN AND RANGE

The set $X$ is called the domain of the function. This is the set of all possible $x$ values specified for a given function.
The set of all $y$ values corresponding to $X$ is called the range.
In the example below, we see that $x$ goes off into infinity in both directions, so the domain of $y=x^{2}$ is

## \{all real numbers\}

However, we see there are no corresponding values of $y$ that are less than -4 , so the range is $\{y \mid y \geq-4\}$


Example 4 p. 36
Consider the equation
$y=2 x-5$, where the domain is $\{x \mid 1 \leq x \leq 6\}$
Is this equation a function?
Notice that for any x , you can only get one answer for y.
(E.g. for $\mathrm{x}=1, \mathrm{y}=2(1)-5=-3$.) Therefore the equation is a function.
What is the range?
Since this is a straight line, we need only check y values at endpoints of domain. The $y$ values are also called function values, so they are often referred to as $\mathrm{f}(\mathrm{x})$, which means the value of the function at $\boldsymbol{x}$ (not f times x ).
The endpoints of the domain are 1 and 6 .
$f(1)=2(1)-5=-3$
$f(6)=2(6)-5=7$


This figure is a line segment with endpoints $(1,-3)$ and $(6,7)$.

So the range is $\{y \mid-3 \leq y \leq 7\}$


A function, $f$, is like a machine that receives as input a number, x , from the domain, manipulates it, and outputs the value, y .
The function is simply the process that x goes through to become y . This "machine" has 2 restrictions:

1. It only accepts numbers from the domain of the function.
2. For each input, there is exactly one output (which may be repeated for different inputs).

Finding Values of a Function
Example 5 p. 38
For the function f defined by $f(\boldsymbol{x})=2 \boldsymbol{x}^{2}-\mathbf{3 x}$, evaluate
b) $\mathrm{f}(x)+f(3)=[\overbrace{\left.2 x^{2}-3 x\right]}+\overbrace{\left[2(3)^{2}-3(3)\right.}]$

$$
=2 x^{2}-3 x+18-9
$$

$$
=2 x^{2}-3 x+9
$$

e) $\mathrm{f}(x+3)=2(x+3)^{2}-3(x+3)$

$$
=2\left(x^{2}+6 x+9\right)-3 x-9
$$

$$
=2 x^{2}+12 x+18-3 x-9
$$

$$
=2 x^{2}+9 x+9
$$

Notice that $f(x)+f(3)$ does not equal $f(x+3)$

## Difference Quotient off

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}= \\
& =\frac{\left[2(x+h)^{2}-3(x+h)\right]-\left[2 x^{2}-3 x\right]}{h} \\
& =\frac{\left[2\left(x^{2}+2 h x+h^{2}\right)-3 x-3 h\right]-\left[2 x^{2}-3 x\right]}{h} \\
& =\frac{2 x^{2}+4 h x+2 h^{2}-3 x-3 h-2 x^{2}+3 x}{h} \\
& =\frac{4 h x+2 h^{2}-3 h}{h} \\
& =\frac{h(4 x+2 h-3)}{h} \\
& =4 x+2 h-3
\end{aligned}
$$

This is called the difference quotient off, which is an important function in calculus. In calculus, the derivative, $d y / d x$, is defined as the limit of this function as $h$ approaches 0 .

IMPORTANT FACTS ABOUT FUNCTIONS

1. For each $x$ in the domain of a function $f$, there is one and only one image $f(x)$ in the range.
2. $f$ is the symbol that we use to denote the function. It is symbolic of the equation that we use to get from an $x$ in the domain to the $f(x)$ in the range.
3. If $y=f(x)$, then $x$ is called the independent variable or argument of $f$, and $y$ is called the dependent variable or the value of $f$ at $x$ (or the image of $f$ at $x$ ).

Example 8 p. 40
Find the domain of each of the following functions:
b) $g(x)=\frac{3 x}{x^{2}-4}$
c) $h(t)=\sqrt{4-3 t}$

The domain is the set of all possible x values that can be used in these functions.
b) $g(x)$ is the division of $3 \boldsymbol{x}$ by $\boldsymbol{x}^{2}-4$. This is undefined if the demoninator is 0 , so we have the limitation that $\boldsymbol{x}^{2}-\mathbf{4} \neq \mathbf{0}$.
Solve for x to find specifications for what x cannot be.
$x^{2} \neq 4$
$x \neq \pm 2$
Therefore domain is $\{x \mid x \neq \pm 2\}$ The function $g(x)$ is not defined at $x=2$ or $x=-2$.
c) $\boldsymbol{h}(\boldsymbol{t})$ is the square root of $4-3 t$. Only nonnegative numbers have real square roots, so the expression on the radical must be $\geq 0$.
$4-3 t \geq 0$
$-3 t \geq-4$
Remember when you multiply an inequality by a negative number, the inequality reverses.

$$
-3 t /(-3) \leq-4 /(-3)
$$

$t \leq-4 / 3$
Therefore domain is $\{t \mid t \leq-4 / 3\}$
Another way to state this is in interval form: $\left(-\infty, \frac{-4}{3}\right]_{\substack{\text { describe a set of numbers } \\ \text { joordinate point. It's }}}^{\left.\begin{array}{l}\text { This is not a } \\ \text { con }\end{array}\right)}$
The left-sided (means that $x$ is open-bounded on the left by -infinity (of course it never reaches -infinity) and the right-sided] means that $x$ is close-bounded on the right by $-4 / 3$. The set includes the number $-4 / 3$.
NOW YOU DO \#37 on p. 46
Look at the graph to the right $(y=1 / x)$ :
Is this graph a function?
Yes, because a vertical line through any x -value on the graph only intersects the graph once.

## What are the domain and range?

The domain (possible x values) is $\{\mathrm{x} \mid \mathrm{x}\{x \mid \mathrm{x} \neq 0\}$ The range (possible $y$ values) is $\{y \mid y \neq 0\}$


## Problem 48 on p. 47


a) Find $f(0)$ and $f(6)$

What is y when x is 0 and x is 6 ? From the data given, we see the y -coordinate at $\mathrm{x}=0$ is 0 , so $f(0)=0$. The y -coordinate at $\mathrm{x}=6$ is also 0 , $\operatorname{so} f(6)=0$.
b) Find $f(2)$ and $f(-2)$

What is y when x is 2 and x is -2 ? From the data given, we see the y -coordinate at $\mathrm{x}=2$ is -2 , so $f(2)=-2$. The y -coordinate at $\mathrm{x}=-2$ is 1 , so $f(-2)=1$.
c) Is $f(3)$ positive or negative? We see that at $x=3$ the graph is below the $x$-axis (where $y<0$ ) so $f(3)$ is negative.
d) Is $f(-1)$ positive or negative? We see that at $x=3$ the graph is below the $x$-axis (where $y<0$ ) so $f(3)$ is negative.
e) For what numbers $x$ is $f(x)=0$ ? In other words, at which values of $x$ cross the $x$-axis (where $\mathrm{y}=0$ )? The graph crosses the x -axis at $\mathrm{x}=0, \mathrm{x}=4, \mathrm{x}=6$.
f) For what numbers x is $\mathrm{f}(\mathrm{x})<0$ ? In other words, at which values of x is the graph below the x -axis? Remember, the coordinates where $y=0$ are not included. The graph is $<0$ only for $0<x<4$. In interval form this is $(0,4)$.
g) What is the domain of $f$ ? Domain is the possible $x$ values. Remember that this graph does not continue into infinity on both sides. It is only define for the graph drawn. Therefore, can infer that the possible $x$ values are $-4 \leq x \leq 6$, or $[-4,6]$
h) What is the range of $f$ ? The $y$ values range from as low as -2 to as high as 3 , so range is $\{y \mid-2 \leq y$ $\leq 3\}$ or $[-2,3]$.
i) What are the $x$-intercepts? The $x$-intercepts are found when $y=0$, which are the points $\{(0,0)$, $(4,0),(6,0)\}$.
j) What is the y-intercept? By definition, this would not be a function if it crossed the $y$-axis (or any other vertical line) more than once. The only point that does this is $(0,0)$.
k) How often does the line $y=-1$ intersect the graph? If we draw a horizontal line through $y=-1$, we'd see it intersects twice.

1) How often does he line $x=1$ intersect the graph? Three times.
m) For what value of $x$ does $f(x)=3$ ? Remember $f(x)$ is the same as $y$. What is $x$ when $y=5$ ? There's only one point on the graph that gives a $y$-value of 3 . That is when $x=5$.
n) For what value of $x$ does $f(x)=-2$ ? There's only one point on the graph that gives a $y$-value of -2 . That is when $\mathrm{x}=2$.

## Example 11 on p. 44

$$
f(x)=\frac{x}{x+2}
$$

a) Is the point $(1,1 / 2)$ on the graph of $f$ ? Substitute 1 for x and $1 / 2$ for $\mathrm{f}(\mathrm{x})$ and see if the statement is true.
Does $1 / 2=1 /(1+2) ? 1 / 2 \neq 1 / 3$ Therefore ( $1,1 / 2$ ) is not on the graph.
b) If $x=-1$, what is $f(x)$ ? $f(-1)=-1 /(-1+2)=-1 / 1=-1$

The point at $x=-1$ is $(-1,-1)$.
c) If $f(x)=2$, what is $x$ ? YOU DO THIS?

## Example 12 on p. 45 Area of a Circle

$$
\mathrm{A}(\mathrm{r})=\pi \mathrm{r}^{2}
$$

where r represents the radius of the circle. The domain is $\{\mathrm{r} \mid \mathrm{r}>0\}$. Why?
NOW YOU DO \#87 on p. 50

## HOMEWORK

p. 46 \#9, 17, 25, 29, 39, 45, 47, 65, 73, 85

