2.3 Computing the Values of Trig Functions of Given Angles

Functions of $\pi / 4=45^{\circ}$

If one acute angle of a right triangle is 45°, then the other acute angle must also be 45°, since all the angles of a triangle must add up to $180^{\circ}\left(45^{\circ}+45^{\circ}+90^{\circ}=180^{\circ}\right)$. This makes it an isosceles right triangle with the 2 legs being of equal length $(a=b)$

b

Since trig functions are defined by ratios of lengths and not the actual lengths themselves, we can choose any number for a to calculate the trig functions for $\pi / 4$ radians. We'll let $a=b=1$.
From the Pythagorean Theorem, the hypotenuse $\mathrm{c}=$

$$
\sqrt{a^{2}+a^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

Now that we know all three sides we can easily calculate all the trig functions.

Functions of $\pi / 3=60^{\circ}$ and $\pi / 6=30^{\circ}$

As before, we can choose any length for a side and derive more info from there. Since 30° is half of 60°, then one of the legs is half the hypotenuse, so we'll choose c $=2$, so $a=\mathrm{c} / 2=1$.

$b=\sqrt{c^{2}-a^{2}}=\sqrt{2^{2}-1^{2}}=\sqrt{3}$

Trig Fctn	Definition	Exact Value
$\sin (\pi / 4)$	$b / c=$ opposite $/$ hyp otenuse	$b / c=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\cos (\pi / 4)$	a/c=adjacent/hyp otenuse	$a / c=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\tan (\pi / 4)$	$b / a=o p p o s i t e / a d j$ acent	$b / a=1 / 1=1$
$\csc (\pi / 4)$	$c / b=$ hypotenuse/o pposite	$c / b=\frac{\sqrt{2}}{1}=\sqrt{2}$
$\sec (\pi / 4)$	c/a=hypotenuse/a djacent	$c / a=\frac{\sqrt{2}}{1}=\sqrt{2}$
$\cot (\pi / 4)$	$a / b=$ adjacent $/ o p p$ osite	$a / b=1 / 1=1$
Trig Fctn	Definition	Exact Value
$\begin{aligned} & \sin \left(60^{\circ}\right) \\ & =\cos \left(30^{\circ}\right) \end{aligned}$	b/c=opposite/hy potenuse	$b / c=\frac{\sqrt{3}}{2}$
$\begin{aligned} & \cos \left(60^{\circ}\right) \\ & =\sin \left(30^{\circ}\right) \end{aligned}$	a/c=adjacent/h ypotenuse	$a / c=1 / 2$
$\begin{aligned} & \tan \left(60^{\circ}\right) \\ & =\cot \left(30^{\circ}\right) \end{aligned}$	b/a=opposite/a djacent	$b / a=\frac{\sqrt{3}}{1}=\sqrt{3}$
$\begin{aligned} & \csc \left(60^{\circ}\right) \\ & =\sec \left(30^{\circ}\right) \end{aligned}$	$c / b=$ hypotenuse /opposite	$c / b=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
$\begin{aligned} & \sec \left(60^{\circ}\right) \\ & =\csc \left(30^{\circ}\right) \end{aligned}$	c/a=hypotenuse /adjacent	$c / a=2 / 1=2$
$\begin{aligned} & \cot \left(60^{\circ}\right) \\ & =\tan \left(30^{\circ}\right) \end{aligned}$	$a / b=$ adjacent/o pposite	$a / b=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

Finding Exact Value of Trig Functions

Example 4 on p. 143
Find the exact value of
a) $\left(\sin 45^{\circ}\right)\left(\cos 30^{\circ}\right)=\frac{\sqrt{2}}{2} \bullet \frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{4}$
b) $\tan \pi / 4-\sin \pi / 3=\frac{1}{3}+\frac{1}{2}=\frac{2}{6}+\frac{3}{6}=\frac{5}{6}$
c) $\tan ^{2} \pi / 6+\sin ^{2} \pi / 4={ }_{1-\frac{\sqrt{3}}{2}}^{2}=\frac{2}{2}-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}$

Now you do \#19 on p. 149

Example 5 p. 144 Sometimes you have to use a calculator.
a) Find $\cos 48^{\circ}$
b) Find $\csc 21^{\circ}$
c) Find $\tan \pi / 12$

Example 6 on p. 145 Constructing a Rain Gutter

4 in.

A 12 " wide aluminum sheet is bent up 4 " from each end to make a rain gutter. A) Express the area of the rain gutter opening as a function, $\mathrm{A}(\theta)$, where θ is the angle that the sheet is bent up.
B) Find the area for $\theta=30^{\circ}, 45^{\circ}, 60^{\circ}$ and 75°
A) Express Area as a Function of $\theta . \quad$ Area $=A(\theta)$

Total Area $=$ area of the 2 right triangles + middle rectangle.
We'll let $a=$ base of triangles, $b=$ height of the triangles and the rectangle.

If we draw a line from one end of the rain gutter to the other, we have 2 parallel lines: the base of the rain gutter, and the top. From geometry, we know that if a line intersects 2 parallel lines, then the angles from the parallel lines to the intersecting line are the same.

We only know the lengths of 1 side of each triangle, and the length of the rectangle. How do we get the rest?

We are told to put everything in terms of θ. Notice there is a relationship between b and θ, and a and θ.

$$
\sin (\theta)=b / 4 \quad \cos (\theta)=a / 4
$$

Cross multiplying gives $4 \sin (\theta)=b$ and $4 \cos (\theta)=a$
We can now use this for b and a.
Area $=1 / 2 * a * \mathrm{~b}+1 / 2^{*} a * b+4 * b$.
Area $=1 / 2 * 4 \cos (\theta) * 4 \sin (\theta)+1 / 2^{*} 4 \cos (\theta) * 4 \sin (\theta)+4 * 4 \sin (\theta)$
Simplifying we get:
Area $=\mathrm{A}(\theta)=16 \cos (\theta) \sin (\theta)+16 \sin (\theta)$

Example 9 p. 148

$\tan 55.1^{\circ}=\frac{b}{400} \quad b=400 \tan 55.1^{\circ} \approx 573$
$\tan 56.5^{\circ}=\frac{b^{\prime}}{400} \quad b^{\prime}=400 \tan 56.5^{\circ} \approx 604$
Height of statute is approx. 604-573 $=31$ feet

Homework

p. 149 \#18-45 ETP
p.150-151 \#59-75 ODD

