2.3 Computing the Values of Trig Functions of Given Angles

Functions of $\pi/4 = 45^{\circ}$

If one acute angle of a right triangle is 45° , then the other acute angle must also be 45° , since all the angles of a triangle must add up to $180^{\circ} (45^{\circ} + 45^{\circ} + 90^{\circ} = 180^{\circ})$. This makes it an isosceles right triangle with the 2 legs being of equal length (*a*=*b*)

Since trig functions are defined by ratios of lengths and not the actual lengths themselves, we can choose any number for *a* to calculate the trig functions for $\pi/4$

radians. We'll let a=b=1. From the Pythagorean Theorem, the hypotenuse c =

$$\sqrt{a^2 + a^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

Now that we know all three sides we can easily calculate all the trig functions.

Functions of $\pi/3 = 60^{\circ}$ and $\pi/6 = 30^{\circ}$

As before, we can choose any length for a side and derive more info from there. Since 30° is half of 60° , then one of the legs is half the hypotenuse, so

we'll choose c = 2, so a = c/2 = 1.

$$b = \sqrt{c^2 - a^2} = \sqrt{2^2 - 1^2} = \sqrt{3}$$

Trig Fctn	Definition	Exact Value
sin(<u>π/4</u>)	b/c= o pposite/ h yp otenuse	$b/c = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
$\cos(\pi/4)$	a/c= a djacent/ h yp otenuse	$a/c = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
tan(<u>π/4</u>)	b/a= o pposite/ a dj acent	<i>b/a</i> = 1/1 = 1
$\csc(\underline{\pi/4})$	c/b=hypotenuse/o pposite	$c/b = \frac{\sqrt{2}}{1} = \sqrt{2}$
sec(<u>π/4</u>)	c/a=hypotenuse/a djacent	$\frac{c/a}{1} = \frac{\sqrt{2}}{1} = \sqrt{2}$
cot(<u>π/4</u>)	a/b=adjacent/opp osite	<i>a/b=</i> 1/1 = 1
Trig Fctn	Definition	Exact Value
$sin(60^{\circ}) = cos(30^{\circ})$	b/c= o pposite/ h y potenuse	$b/c = \frac{\sqrt{3}}{2}$
		$b/c = \frac{\sqrt{3}}{2}$ $a/c = \frac{1}{2}$
$=\cos(30^{\circ})$ $\cos(60^{\circ})$	potenuse a/c= a djacent/ h	2
$=\cos(30^{\circ})$ $\cos(60^{\circ})$ $=\sin(30^{\circ})$ $\tan(60^{\circ})$	potenuse a/c=adjacent/h ypotenuse b/a=opposite/a	$a/c = \frac{1}{2}$
$=\cos(30^{\circ})$ $\cos(60^{\circ})$ $=\sin(30^{\circ})$ $\tan(60^{\circ})$ $=\cot(30^{\circ})$ $\csc(60^{\circ})$	potenuse a/c=adjacent/h ypotenuse b/a=opposite/a djacent c/b=hypotenuse	$a/c = \frac{1}{2}$ $b/a = \frac{\sqrt{3}}{1} = \sqrt{3}$

PDF created with pdfFactory Pro trial version <u>www.pdffactory.com</u>

Finding Exact Value of Trig Functions

Example 4 on p.143 Find the exact value of a) $(\sin 45^{\circ})(\cos 30^{\circ}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{4}$ b) $\tan \pi/4 - \sin \pi/3 = \frac{1}{3} + \frac{1}{2} = \frac{2}{6} + \frac{3}{6} = \frac{5}{6}$ c) $\tan^2 \pi/6 + \sin^2 \pi/4 = 1 - \frac{\sqrt{3}}{2} = \frac{2}{2} - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2}$

Now you do #19 on p. 149

Example 5 p. 144 Sometimes you have to use a calculator.

a) Find $\cos 48^{\circ}$ b) Find $\csc 21^{\circ}$ c) Find $\tan \pi/12$

Example 6 on p.145 Constructing a Rain Gutter

A 12" wide aluminum sheet is bent up 4" from each end to make a rain gutter. A) Express the area of the rain gutter opening as a function, $A(\theta)$, where θ is the angle that the sheet is bent up. B) Find the area for $\theta = 30^{\circ}$, 45° , 60° and 75°

A) Express Area as a Function of θ . Area = $A(\theta)$

Total Area = area of the 2 right triangles + middle rectangle. We'll let a = base of triangles, b=height of the triangles and the rectangle. Area = $\frac{1}{2}a^{*}b + \frac{1}{2}a^{*}b + \frac{4}{4}b$. length of rectangle, height of rectangle

- If we draw a line from one end of the rain gutter to the other, we have 2 parallel lines: the base of the rain gutter, and the top. From geometry, we know that if a line intersects 2 parallel lines, then the angles from the parallel lines to the intersecting line are the same.
- We only know the lengths of 1 side of each triangle, and the length of the rectangle. How do we get the rest?

We are told to put everything in terms of θ . Notice there is a relationship between *b* and θ , and *a* and θ .

 $\sin (\theta) = b/4 \qquad \cos (\theta) = a/4$ Cross multiplying gives $4\sin(\theta) = b$ and $4\cos(\theta) = a$ We can now use this for *b* and *a*.

Area = $\frac{1}{2}a^*b$ + $\frac{1}{2}a^*b$ + 4^*b . Area = $\frac{1}{2}4\cos(\theta) + 4\sin(\theta) + \frac{1}{2}4\cos(\theta) + 4\sin(\theta) + 4^*4\sin(\theta)$ Simplifying we get: Area = A(θ) = $16\cos(\theta)\sin(\theta) + 16\sin(\theta)$

 $\tan 55.1^\circ = \frac{b}{400}$ $b = 400 \tan 55.1^\circ \approx 573$ $\tan 56.5^\circ = \frac{b'}{400}$ $b' = 400 \tan 56.5^\circ \approx 604$

Height of statute is approx. 604 - 573 = 31 feet

Homework p.149 #18-45 ETP p.150-151 #59-75 ODD