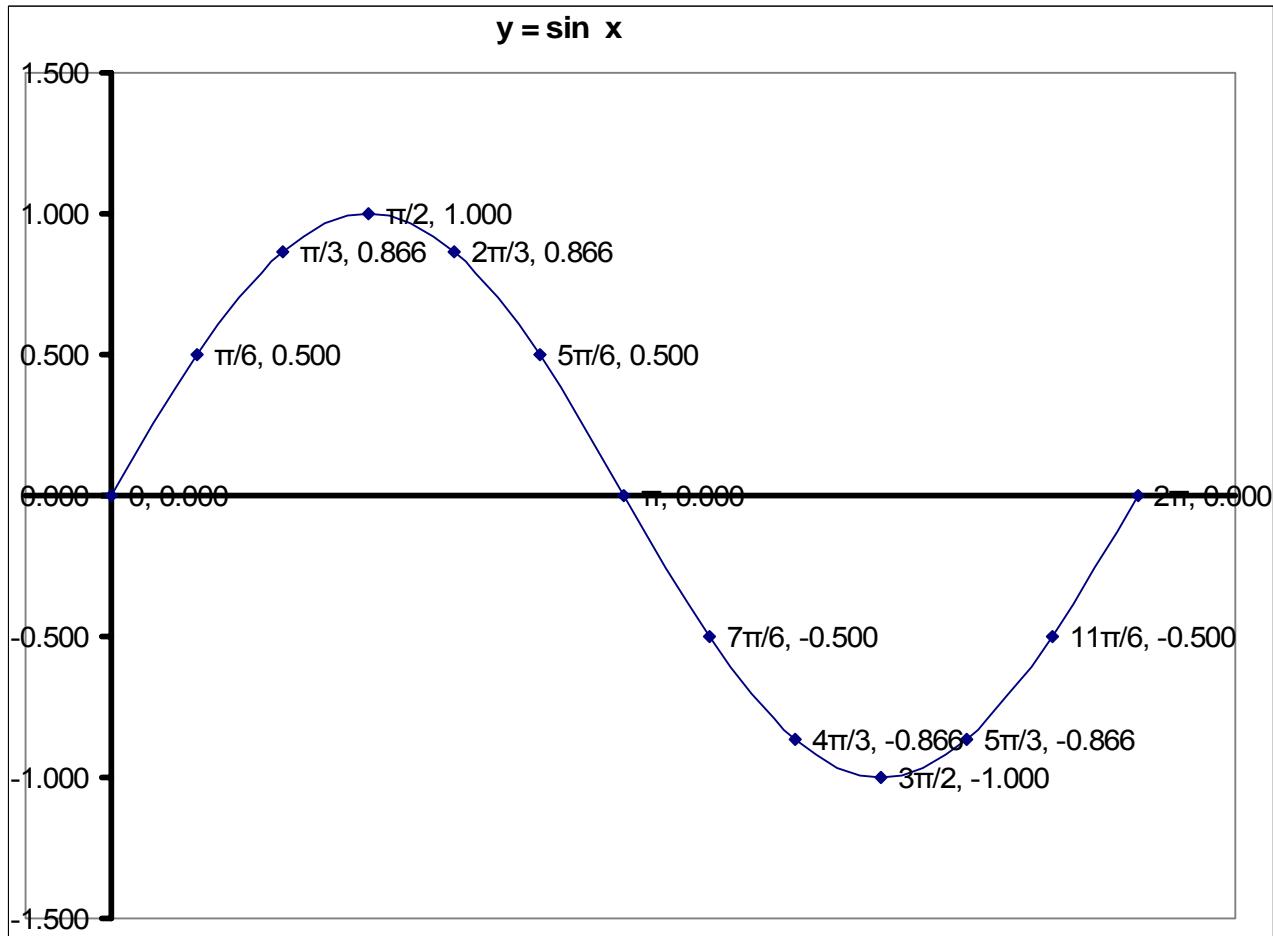


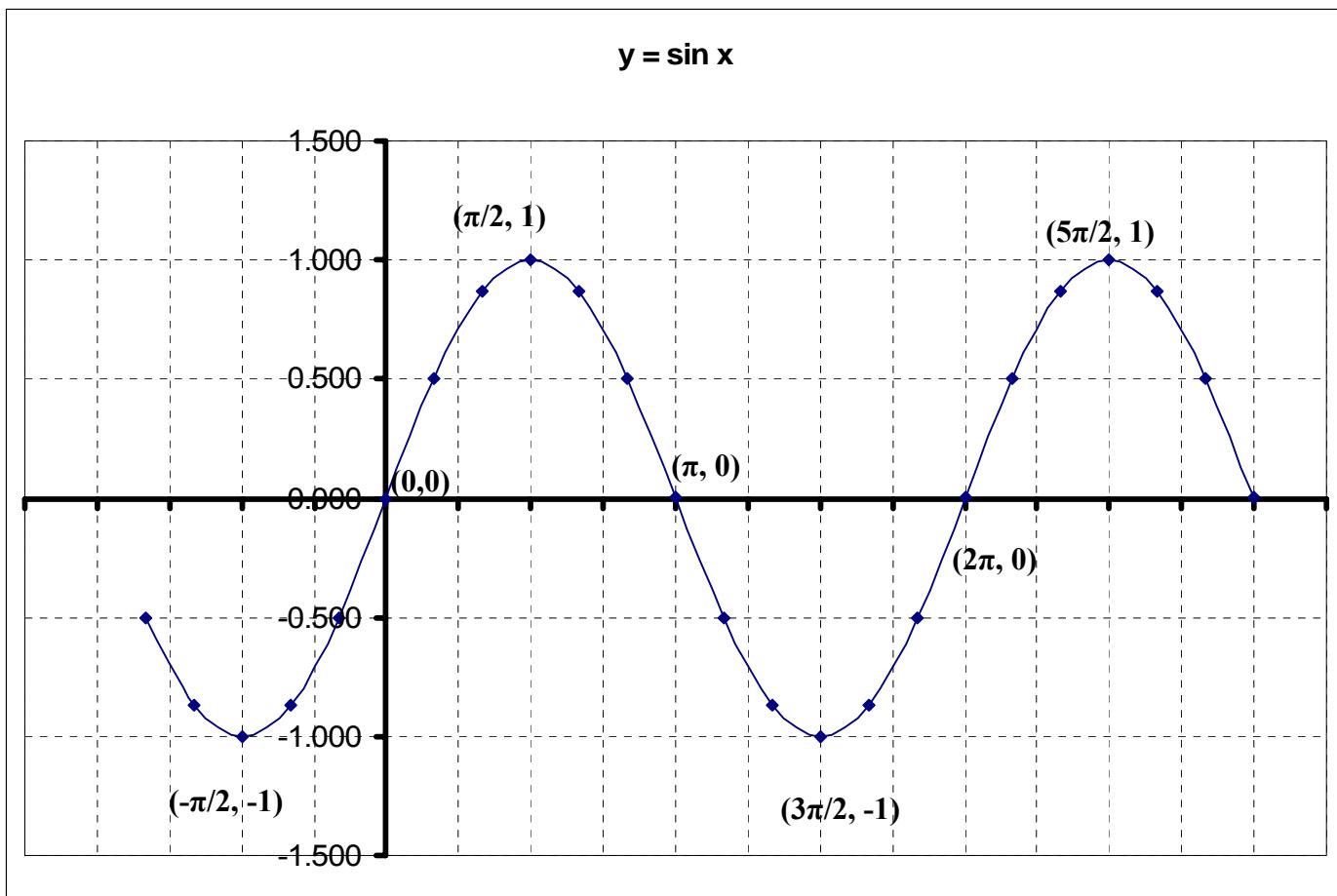
2.6 Graphs of the Sine and Cosine Functions

x	x	y = sin x
0	0	=SIN(B2)
$\pi/6$	=PI()/6	=SIN(B3)
$\pi/3$	=PI()/3	=SIN(B4)
$\pi/2$	=PI()/2	=SIN(B5)
$2\pi/3$	=B5+PI()/6	=SIN(B6)
$5\pi/6$	=B6+PI()/6	=SIN(B7)
π	=B7+PI()/6	=SIN(B8)
$7\pi/6$	=B8+PI()/6	=SIN(B9)
$4\pi/3$	=B9+PI()/6	=SIN(B10)
$3\pi/2$	=B10+PI()/6	=SIN(B11)
$5\pi/3$	=B11+PI()/6	=SIN(B12)
$11\pi/6$	=B12+PI()/6	=SIN(B13)
2π	=B13+PI()/6	=SIN(B14)

x	x	y = sin x
0	0	0.000
$\pi/6$	0.524	0.500
$\pi/3$	1.047	0.866
$\pi/2$	1.571	1.000
$2\pi/3$	2.094	0.866
$5\pi/6$	2.618	0.500
π	3.142	0.000
$7\pi/6$	3.665	-0.500
$4\pi/3$	4.189	-0.866
$3\pi/2$	4.712	-1.000
$5\pi/3$	5.236	-0.866
$11\pi/6$	5.76	-0.500
2π	6.283	0.000

If we graph $y = \sin x$ by plotting points, we see the following: Going from 0 to 2π , $\sin(x)$ starts out with the value 0, then rises to 1 at $\pi/2$, then goes back to 0 at π . At $x > \pi$, $\sin(\theta)$ goes from 0 to -1 at $3\pi/2$, then back to 0 at 2π . At this point the sin values repeat. The period of the sine function is 2π . To graph a more complete graph of $y = \sin x$, we repeat this period in each direction.





If we continued the graph in both directions, we'd notice the following:
 The domain is the set of all real numbers.
 The range consists of all real numbers such that $-1 \leq \sin x \leq 1$.
 The function $f(x) = \sin x$ is an odd function since the graph is symmetric with respect to the origin. ($f(-x) = -f(x)$ for every x in the domain).
 The period of the sine function is 2π .
 The x-intercepts are $\dots, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \dots$, etc..
 The y-intercept is $(0,0)$.
 The maximum value is 1 and occurs at $x = \dots, -3\pi/2, \pi/2, 5\pi/2, \dots$, etc..
 The minimum value is -1 and occurs at $x = \dots, -\pi/2, 3\pi/2, 7\pi/2, \dots$, etc..

Example 1 on p. 155

How do you graph $y = \sin(x - \pi/4)$?

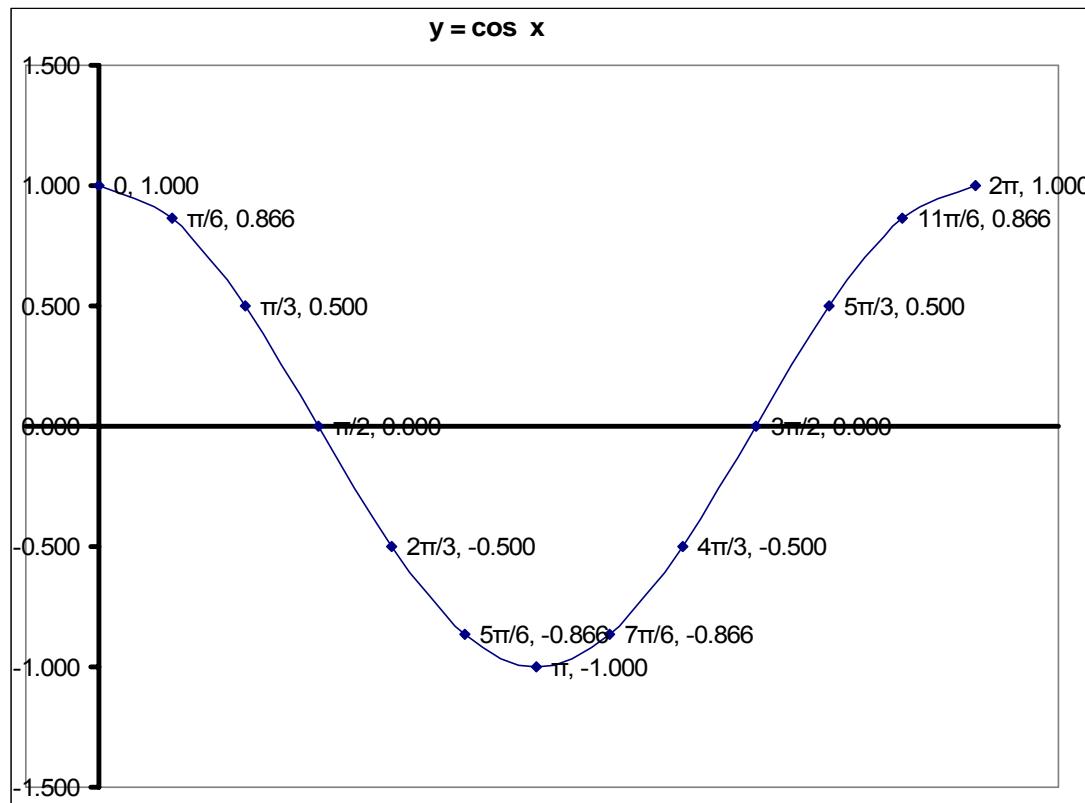
Notice that this function is similar to $y = \sin x$, with $(x - \pi/4)$

Instead of x . Therefore, this is just a horizontal shift to the **RIGHT** by $\pi/4$
 [show on TI-83]

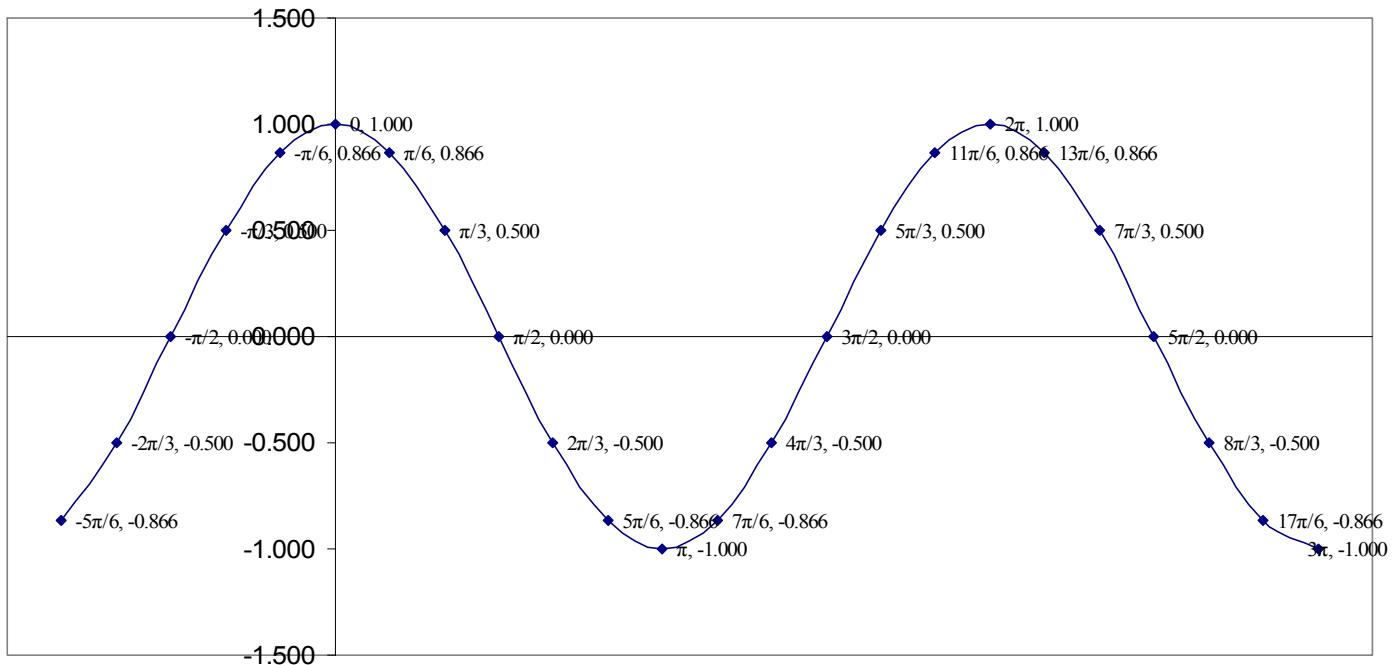
x	x	$y = \cos x$
0	0	=COS(B2)
$\pi/6$	=PI()/6	=COS(B3)
$\pi/3$	=PI()/3	=COS(B4)
$\pi/2$	=PI()/2	=COS(B5)
$2\pi/3$	=B5+PI()/6	=COS(B6)
$5\pi/6$	=B6+PI()/6	=COS(B7)
π	=B7+PI()/6	=COS(B8)
$7\pi/6$	=B8+PI()/6	=COS(B9)
$4\pi/3$	=B9+PI()/6	=COS(B10)
$3\pi/2$	=B10+PI()/6	=COS(B11)
$5\pi/3$	=B11+PI()/6	=COS(B12)
$11\pi/6$	=B12+PI()/6	=COS(B13)
2π	=B13+PI()/6	=COS(B14)

x	x	$y = \cos x$
0	0	1.000
$\pi/6$	0.524	0.866
$\pi/3$	1.047	0.500
$\pi/2$	1.571	0.000
$2\pi/3$	2.094	-0.500
$5\pi/6$	2.618	-0.866
π	3.142	-1.000
$7\pi/6$	3.665	-0.866
$4\pi/3$	4.189	-0.500
$3\pi/2$	4.712	0.000
$5\pi/3$	5.236	0.500
$11\pi/6$	5.76	0.866
2π	6.283	1.000

If we graph $y = \cos x$ by plotting points, we see the following: Going from 0 to 2π , $\cos(x)$ starts out with the value 1, then decreases to 0 at $\pi/2$, then continues decreasing to -1 at π . At $x > \pi$, $\cos(x)$ goes from -1 to 0 at $3\pi/2$, then continues increasing to 1 at 2π . At this point the cos values repeat. The period of the cosine function is 2π . To graph a more complete graph of $y = \cos x$, we repeat this period in each direction.



$$y = \cos x$$



If we continued the graph in both directions, we'd notice the following:

The domain is the set of all real numbers.

The range consists of all real numbers such that $-1 \leq \cos x \leq 1$.

The function $f(x) = \cos x$ is an even function since the graph is symmetric with respect to the y-axis. [$f(-x) = f(x)$ for every x in the domain].

The period of the cosine function is 2π .

The x-intercepts are $\dots, -\pi/2, \pi/2, 3\pi/2, 5\pi/2, \dots$ etc...

The y-intercept is $(0, 1)$.

The maximum value is 1 and occurs at $x = \dots, -2\pi, 0, 2\pi, \dots$ etc..

The minimum value is -1 and occurs at $x = \dots, -\pi, \pi, 3\pi, \dots$ etc..

TRANSFORMATIONS

$$y = A \sin(\omega x + h) + v \quad \text{or} \quad y = A \cos(\omega x + h) + v$$

$|A|$ = **amplitude** = the biggest value of a periodically changing value.

If $A < 0$, the graph is reflected on the x -axis.

$$-|A| \leq A \sin x \leq |A| \text{ and } -|A| \leq A \cos x \leq |A|$$

[since $\sin x \leq 1$ and $\cos x \leq 1$]

ω =**Frequency** = number of **periods** per time. The number of periods per second is measured in **hertz** (hz for short). We have a frequency of 1hz if a wave has exactly one period per second. If we have 5 periods per second, we have a frequency of 5hz.

Period = the length between two points which are surrounded by the same pattern.

For sin and cos functions, period = 2π

For tan and cot functions, period = π

The new period of this function will either compress or stretch by a factor of $1/\omega$.

If the $0 < \omega < 1$, the new period is longer than the original function.

If the $\omega > 1$, the new period is shorter than the original function.

For sin and cos:

$$T = \text{period of new function} = 2\pi/\omega$$

h = horizontal displacement.

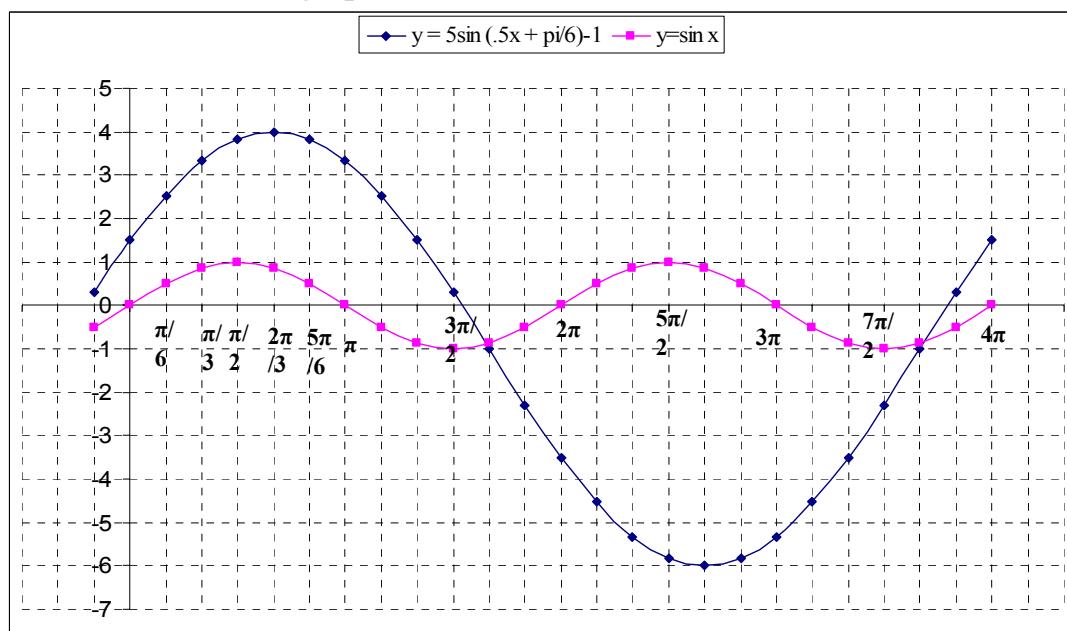
(+) If $h > 0$, graph is shifted to the LEFT.

(-) If $h < 0$, graph is shifted to the RIGHT.

v = vertical displacement

(+) If $v > 0$, graph is shifted UP.

(-) If $v < 0$, graph is shifted DOWN.



Now you try #23

Example 8 on p.164

$$y = 2 \sin\left(-\frac{\pi}{2} x\right)$$

From the form $\mathbf{y} = \mathbf{A} \sin(\omega x + \mathbf{h}) + \mathbf{v}$

$$\omega = -\pi/2$$

(However we need $\omega > 0$)

Let's remember that $\sin x$ is an odd function, where

$$f(-x) = -f(x)$$

So

$$y = 2 \sin\left(-\frac{\pi}{2} x\right) = -2 \sin\left(\frac{\pi}{2} x\right)$$

↑
↑
↑

Negative sign means sin
function will be
reflected on the x-axis $|A|=2$ $\omega = \pi/2$

The amplitude is $|-2| = 2$ so the largest value of y is 2.

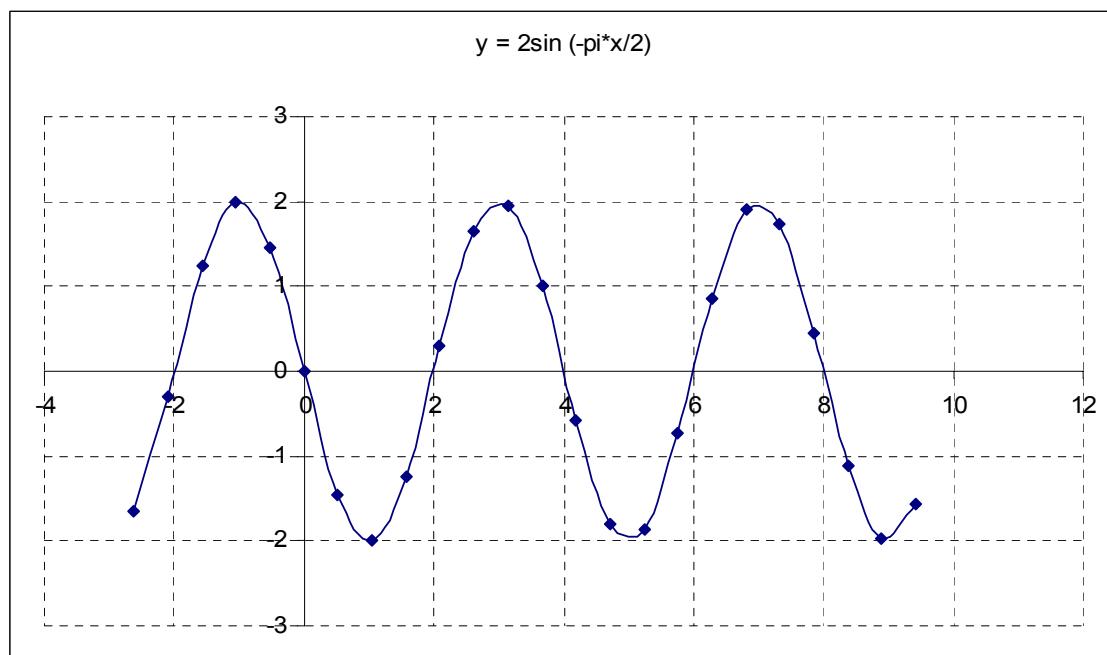
$$\text{The period is } T = 2\pi/\omega = \frac{2\pi}{\pi/2} = 2\pi \cdot 2/\pi = 4$$

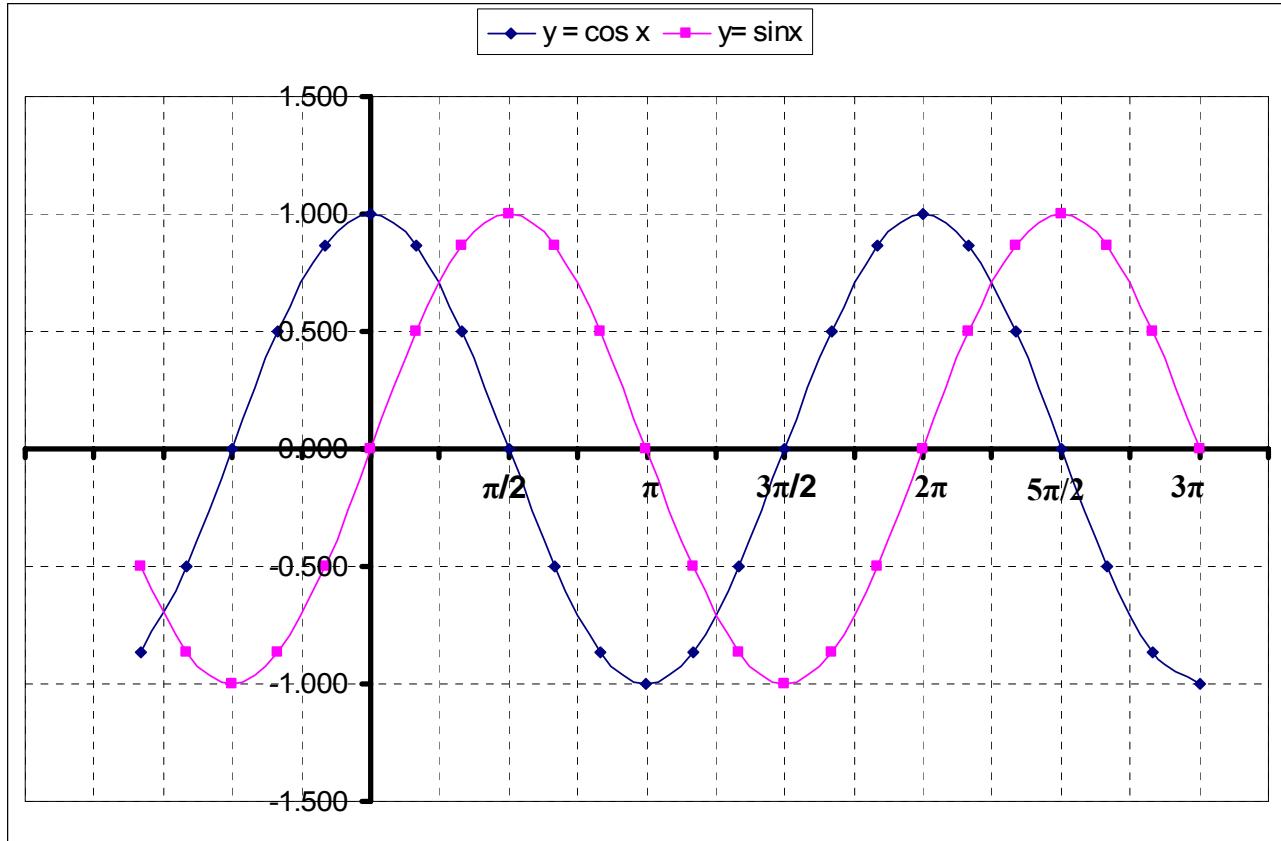
$h = 0, v = 0$, so there is no horizontal or vertical displacement.

Therefore, the period starts at 0 and ends at 4.

$\sin x = 0$ at $x = \pi$, so

$$\sin\left(\frac{\pi}{2} x\right) = 0, \text{ when } x = 2$$





Notice $\sin x$ and $\cos x$ are basically the same curves.
 $\cos x$ is just $\sin x$ shifted to the left by $\pi/2$. Therefore,
 $\cos x = \sin(x + \pi/2)$.
Or alternatively, $\sin x$ is just $\cos x$ shifted to the right by $\pi/2$.
So
 $\sin x = \cos(x - \pi/2)$.

Because of the similarity of cosine and sine curves,
these functions are often referred to as sinusoidal graphs.

Homework

p. 166-169

#11*, 23*, 25, 27, 33*, 35, 39*, 43, 53,
63*, 67*, 69, 81

* Will be done in class.