also see http://www.mathsisfun.com/sine-cosine-tangent.html
θ is an acute angle because it is less than 90
b
Opposite to θ degrees.

a

Adjacent to θ

Adjacent is always next to the angle And Opposite is opposite the angle

These ratios are the same for any right triangle with acute angle θ. They are

$\sin (\theta)=O / H$

$\cos (\theta)=A / H$,

$\boldsymbol{\operatorname { t a n }}(\theta)=O / A)$

In other words:

$$
\csc (\theta)=1 / \sin (\theta), \sec (\theta)=1 / \cos (\theta), \cot (\theta)=1 / \tan (\theta)
$$

Example:

Sine Function

The Sine of angle $\boldsymbol{\theta}$ is:

- the length of the side Opposite angle $\boldsymbol{\theta}$
- divided by the length of the Hypotenuse Or more simply:

$$
\sin (\theta)=\text { Opposite } / \text { Hypotenuse }
$$

Example: What is the sine of 35° ?

Using this triangle (lengths are only to one decimal place):
$\sin \left(35^{\circ}\right)=$ Opposite $/$ Hypotenuse $=2.8 / 4.9=\mathbf{0 . 5 7} .$. .

The Sine Function can help us solve things like this:

Example: Use the sine function to find "d" We know

* The angle the cable makes with the seabed is 39°
* The cable's length is 30 m .

And we want to know "d" (the distance down).

Start with: $\sin 39^{\circ}=$ opposite/hypotenuse $=d / 30$
Swap Sides: $\quad d / 30=\sin 39^{\circ}$
Use a calculator to find $\sin 39^{\circ}: d / 30=0.6293 \ldots$
Multiply both sides by $30: d=0.6293 \ldots \times 30=\mathbf{1 8} . \mathbf{8 8}$ to 2 decimal places.

Inverse Sine

But what if it is the angle we don't know?
This is where "Inverse Sine" comes in.
It answers the question "what angle has sine equal to opposite/hypotenuse?"
The symbol for inverse sine is $\boldsymbol{\operatorname { s i n }}^{-1}$

Example: Find the angle "a"
We know

* The distance down is 18.88 m .
* The cable's length is 30 m .

And we want to know the angle "a"

Start with: $\sin a^{\circ}=$ opposite/hypotenuse $=18.88 / 30$ Calculate 18.88/30: $\sin a^{\circ}=0.6293 \ldots$

What angle has sine equal to $0.6293 \ldots$?
The Inverse Sine will tell us.

$$
\begin{gathered}
\text { Inverse Sine: } a^{\circ}=\boldsymbol{\operatorname { s i n }}^{-\mathbf{1}}(0.6293 \ldots) \\
\text { Use a calculator to find } \boldsymbol{\operatorname { s i n }}^{\mathbf{- 1}}(0.6293 \ldots): a^{\circ}=\mathbf{3 9 . 0 ^ { \circ }} \text { (to } 1 \text { decimal place) } \\
\text { The angle " } a \text { " is } \mathbf{3 9 . 0 ^ { \circ }}
\end{gathered}
$$

They Are Like Forward and Backwards!

- The Sine function Sin takes an angle and gives us the ratio "opposite/hypotenuse"
- Inverse Sine Sin^{-1} takes the ratio "opposite/hypotenuse" and gives us the angle.

Example:

$$
\begin{array}{rr}
\text { Sine Function: } & \sin \left(30^{\circ}\right)=0.5 \\
\text { Inverse Sine: } & \sin ^{-1}(\mathbf{0 . 5})=\mathbf{3 0 ^ { \circ }}
\end{array}
$$

The Tangent of angle $\boldsymbol{\theta}$ is:

$$
\tan (\theta)=\text { Opposite } / \text { Adjacent }
$$

So Inverse Tangent is :

$$
\left.\tan ^{-1} \text { (Opposite } / \text { Adjacent }\right)=\theta
$$

Example: Find the size of angle x°
$\tan x^{\circ}=$ Opposite $/$ Adjacent
$\tan x^{\circ}=300 / 400=0.75$
$x^{\circ}=\boldsymbol{\operatorname { t a n }}^{\boldsymbol{- 1}}(0.75)=\mathbf{3 6 . 9 ^ { \circ }}$ (correct to 1 decimal place)

Summary

The Sine of angle $\boldsymbol{\theta}$ is:

$$
\sin (\theta)=\text { Opposite } / \text { Hypotenuse }
$$

And Inverse Sine is :

$$
\left.\sin ^{-1} \text { (Opposite } / \text { Hypotenuse }\right)=\theta
$$

What About "cos" and "tan" ... ?

Exactly the same idea.

The Cosine of angle $\boldsymbol{\theta}$ is:

$$
\cos (\theta)=\text { Adjacent } / \text { Hypotenuse }
$$

And Inverse Cosine is :

$$
\cos ^{-1}(\text { Adjacent } / \text { Hypotenuse })=\theta
$$

Example: Find the size of angle a° $\cos a^{\circ}=$ Adjacent $/$ Hypotenuse $\cos a^{\circ}=6,750 / 8,100=0.8333 \ldots$ $a^{\circ}=\cos ^{-1}(0.8333 \ldots)=33.6^{\circ}$ (to 1 decimal place)

In Exercises 1 to 4, sfate the ratio needed, and use it to find the measure of the indicated line segment to the nearest tenth of a unitit.
1.

2.

3.

$\square A B C D$
4.

Regular pentagon with radius $=5 \mathrm{ft}$

In Exercises 5 to 8 state the ratio needed, and use it to find the measure of the indicated angle to the nearest degree.
5.

6.

Isosceles trapezoid $A B C D$

Rhombus $A B C D$
8.

23. A4-m beam is used to brace a wall. If the bottom of the beam is 3 m from the base of the wall, what is the angle of elevation to the top of the wall?

24. The basket of a hot-air balloon is 300 fthigh . The pilot of the balloon observes a stadium 2200 ft away. What is the measure of the angle of depression?

$$
\begin{array}{ll}
\tan 55.1^{\circ}=\frac{b}{400} & b=400 \tan 55.1^{\circ} \approx 573 \\
\tan 56.5^{\circ}=\frac{b^{\prime}}{400} & b^{\prime}=400 \tan 56.5^{\circ} \approx 604
\end{array}
$$

Height of statute is approx. 604-573 $=31$ feet

