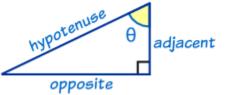
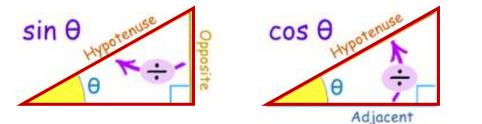
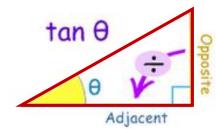

Right Triangle Trigonometry

also see http://www.mathsisfun.com/sine-cosine-tangent.html


 θ is an **acute** angle because it is less than 90 degrees.

b Opposite to θ


a Adjacent to θ


Adjacent is always next to the angle And Opposite is opposite the angle

These ratios are the same for any right triangle with acute angle θ . They are

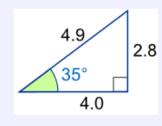
sin(θ)= 0 /Η	cos(t	<i>))=A/H</i> ,	$\tan(\theta)=O/A)$
Notice these functions are the reciprocals of sine, cosine, & tangent, respectively.	FUNCTION NAME	ABBREV.	VALUE
	Sine of θ	$\sin(\theta)$	b/c= o pposite/ h ypotenuse
	Cosine of θ	$\cos(\theta)$	a/c= a djacent/ h ypotenuse
	Tangent of θ	$\tan(\theta)$	b/a= o pposite/ a djacent
	Cosecant of θ	$\csc(\theta)$	c/b=hypotenuse/opposite
	Secant of θ	$\sec(\theta)$	c/a=hypotenuse/adjacent
	Cotangent of θ	$\cot(\theta)$	a/b=adjacent/opposite
	Remember SOH-CAH-TOA		

In other words:

 $\csc(\theta) = 1/\sin(\theta), \sec(\theta) = 1/\cos(\theta), \cot(\theta) = 1/\tan(\theta)$

Example:

Sine Function

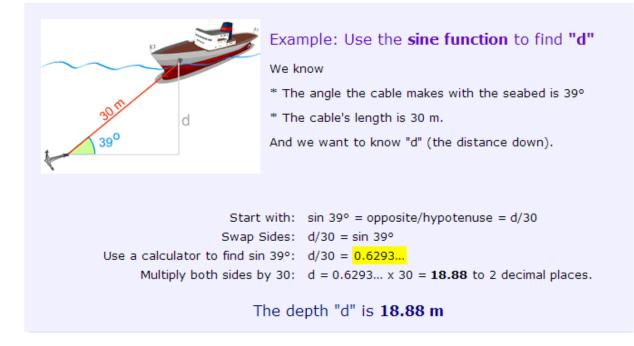

The Sine of angle $\boldsymbol{\theta}$ is:

- the length of the side Opposite angle θ
- divided by the length of the Hypotenuse

Or more simply:

 $sin(\theta) = Opposite / Hypotenuse$

Example: What is the sine of 35°?

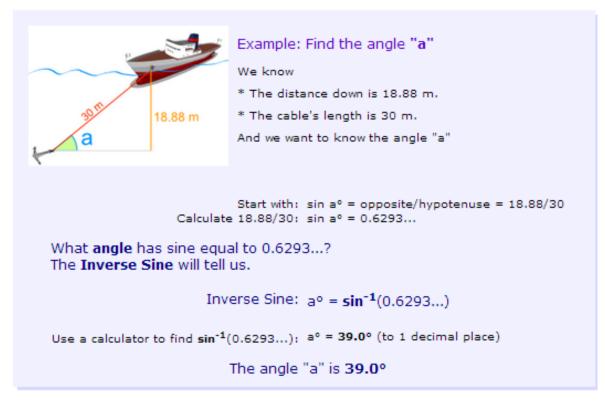

Using this triangle (lengths are only to one decimal place): sin(35°) = Opposite / Hypotenuse = 2.8/4.9 = **0.57...**

Hypotenuse

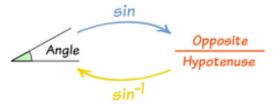
Adjacent

Opposite

The Sine Function can help us solve things like this:


Inverse Sine

But what if it is the angle we don't know?

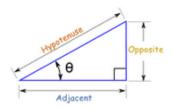

This is where "Inverse Sine" comes in.

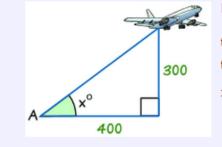
It answers the question "what angle has sine equal to opposite/hypotenuse?"

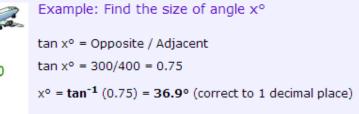
The symbol for inverse sine is sin⁻¹

They Are Like Forward and Backwards!

- The Sine function SIN takes an angle and gives us the ratio "opposite/hypotenuse"
- Inverse Sine Sin⁻¹ takes the ratio "opposite/hypotenuse" and gives us the angle.

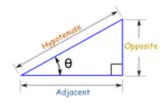

Example:


Sine Function: $sin(30^\circ) = 0.5$ Inverse Sine: $sin^{-1}(0.5) = 30^\circ$ The Tangent of angle θ is:


 $tan(\theta) = Opposite / Adjacent$

So Inverse Tangent is :

$$\tan^{-1}$$
 (Opposite / Adjacent) = θ


Summary

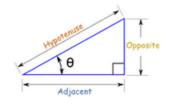
The Sine of angle **θ** is:

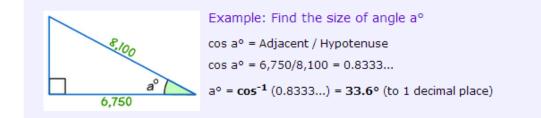
 $sin(\theta) = Opposite / Hypotenuse$

And Inverse Sine is :

 \sin^{-1} (Opposite / Hypotenuse) = θ

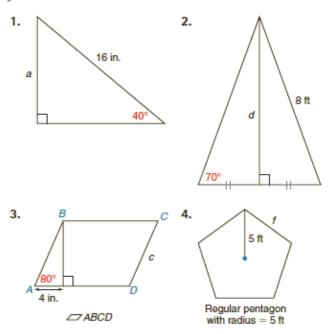
What About "cos" and "tan" ... ?

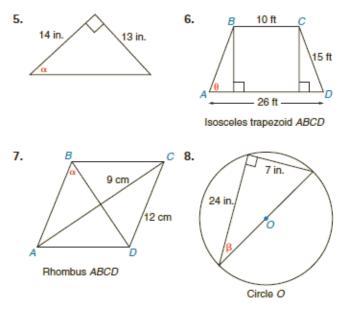

Exactly the same idea.


The Cosine of angle θ is:

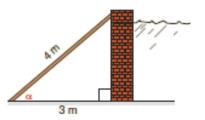
$$\cos(\theta) = \text{Adjacent} / \text{Hypotenuse}$$

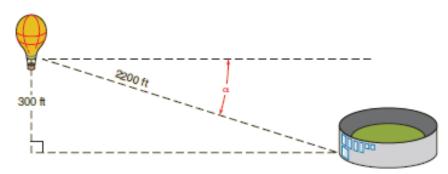
And Inverse Cosine is :

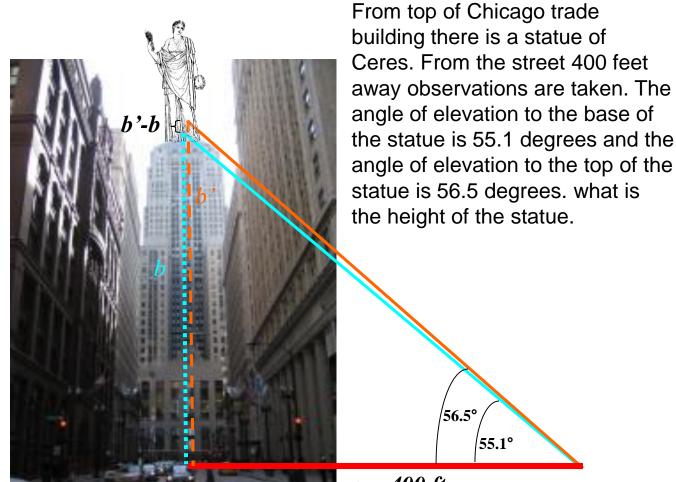




Chapter 11 REVIEW EXERCISES


In Exercises 1 to 4, state the ratio needed, and use it to find the measure of the indicated line segment to the nearest tenth of a unit.


In Exercises 5 to 8, state the ratio needed, and use it to find the measure of the indicated angle to the nearest degree.



23. A 4-m beam is used to brace a wall. If the bottom of the beam is 3 m from the base of the wall, what is the angle of elevation to the top of the wall?

24. The basket of a hot-air balloon is 300 ft high. The pilot of the balloon observes a stadium 2200 ft away. What is the measure of the angle of depression?

 $a = 400 \, ft.$

$$\tan 55.1^{\circ} = \frac{b}{400} \quad b = 400 \tan 55.1^{\circ} \approx 573$$
$$\tan 56.5^{\circ} = \frac{b'}{400} \quad b' = 400 \tan 56.5^{\circ} \approx 604$$

Height of statute is approx. 604 - 573 = 31 feet