# ACCT 102 - Fundamentals of Accounting II Chapter 24 - Capital Budgeting and Investment Analysis 

METHOD
ADVANTAGES
DISADVANTAGES
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Average Rate of } \\ \text { Return }\end{array} & \begin{array}{l}\text { Easy to calculate } \\ \text { Considers accounting income (often } \\ \text { used to evaluate managers) }\end{array} & \begin{array}{l}\text { Ignores cash flows } \\ \text { Ignores the time value of money }\end{array} \\ \hline \text { Cash Payback } & \begin{array}{l}\text { Considers cash flows } \\ \text { Shows when funds are available for } \\ \text { reinvestment }\end{array} & \begin{array}{l}\text { Ignores profitability (accounting income) } \\ \text { Ignores cash flows after the payback period }\end{array} \\ \hline \text { Net Present Value } & \begin{array}{l}\text { Considers cash flows and the time value } \\ \text { of money } \\ \text { Ignores the time value of money }\end{array} & \begin{array}{l}\text { Assumes that cash received from the project can } \\ \text { be reinvested at the rate of return }\end{array} \\ \begin{array}{l}\text { Internal Rate of } \\ \text { Return }\end{array} & \begin{array}{l}\text { Considers cash flows and the time value } \\ \text { of money } \\ \text { using a present value index }\end{array} & \begin{array}{l}\text { Requires complex calculations or trial-and-error } \\ \text { methods }\end{array} \\ \text { Ability to compare projects of unequal } \\ \text { size }\end{array} \quad \begin{array}{l}\text { Assumes that cash received from the project can } \\ \text { be reinvested at the internal rate of return }\end{array}\right]$.

## Methods that Ignore Present Value:

Average Rate of Return $=\frac{\text { Annual after-tax Net Income }}{\text { Annual Average Investment }}$

Cash Payback $=\quad$ Cost of Investment
Annual Net Cash Flow

## Present Value Methods:

Net Present Value Method $=\quad$ Present Value of Net Cash Flows - Investment
Profitability Index $=\quad$ Net Present Value of Cash Flows Investment
Internal Rate of Return
Step 1: Compute the Present Value Factor for the investment

$$
\text { Present Value Factor }=\quad \frac{\text { Amount Invested }}{\text { Net Cash Flows }}
$$

Step 2: Identify the discount rate (IRR) yielding the present value factor

## INVESTMENT ANALYSIS

|  | $\underline{\text { Project A }}$ |  | Project B |  |
| :---: | :---: | :---: | :---: | :---: |
| Cost........................ | \$560,000 |  | \$900,000 |  |
| Expected life.............. | 4 years |  | 4 years |  |
| Expected residual value... |  | \$0 |  | \$0 |
| Expected returns | Income | Net Cash Flow | Income | Net Cash Flow |
| Year 1 | \$10,000 | \$150,000 | \$100,000 | \$325,000 |
| Year 2 | 50,000 | 190,000 | 100,000 | 325,000 |
| Year 3 | 80,000 | 220,000 | 100,000 | 325,000 |
| Year 4 | 84,000 | 224,000 | 100,000 | 325,000 |

What is the Average Rate of Return for:
Project B

Project A

What is the Cash Payback for:
Project B

Project A

## PRESENT VALUE PROBLEMS

1. What is the present value of $\$ 1,000000$ to be received 10 years from now, with interest compounded at $15 \%$ annually?
2. What is the present value of an annuity of $\$ 10,000$ for 5 years at $12 \%$ ?
3. How much cash would you need to invest in a money market account today in order to have $\$ 8,000$ at the end of four years? Assume interest rates are $6 \%$.
4. How much cash would you need to invest in a money market account today in order to be able to withdraw $\$ 8,000$ per year at the end of each of the next four years? Assume interest rates are $6 \%$.
5. Assume you won the grand prize in a sweepstakes. Would it be better to take your prize in $\$ 100,000$ payments each year over the next ten years or $\$ 600,000$ now? Interest rates are $10 \%$.

## CAPITAL INVESTMENT ANALYSIS

## EXERCISE 1

Daily Inc. is considering the acquisition of a newly developed machine at a cost of $\$ 620,000$. This machine is expected to have a useful life of 5 years and no residual value. Use of the new machine is expected to yield total income of $\$ 240,000$ during the 5 years of its useful life and to provide an average annual net cash flow of $\$ 200,000$. The minimum rate of return desired by Daily is $12 \%$. The maximum cash payback period desired by Daily is 3 years.

Instructions: Using the information given, answer the following questions:

1) What average rate of return (based on the average investment) can Daily expect to achieve during the useful life of this machine
2) What is the expected cash payback period for this proposed expenditure?
3) Based on the analysis of average rate of return, should the management of Daily acquire the new machine?
4) Based on the expected cash payback period, should the management acquire the new machine?

## EXERCISE 2

Crusty Corp. is evaluating two capital investment proposals, each requiring an investment of $\$ 250,000$ and each with a six-year life and expected total net cash flows of $\$ 360,000$.

Proposal 1 is expected to provide equal annual net cash flows of $\$ 60,000$. Proposal 2 is expected to have the following unequal net cash flows:

| Year 1 | $\ldots \ldots \ldots \ldots$. | $\$ 100,000$ | Year 4 | $\ldots \ldots \ldots$. | $\$ 45,000$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Year 2 | $\ldots \ldots \ldots \ldots$. | 80,000 | Year 5 | $\ldots \ldots \ldots$. | 45,000 |
| Year 3 | $\ldots \ldots \ldots \ldots$. | 70,000 | Year 6 | $\ldots \ldots \ldots$. | 20,000 |

Instructions: Determine the cash payback period for each proposal.
Proposal 1:

Proposal 2:

## EXERCISE 3

Assume that Crusty Corp. is re-evaluating the two capital investment proposals described in Exercise 2 taking into consideration present value concepts.

Instructions: Determine the net present value for each proposal using a rate of $10 \%$.
Proposal 1:

Proposal 2:

## EXERCISE 4

## Instructions

(1) Complete the following table using the net present value method to evaluate capital investment in new equipment.

| Year | Present Value of 1 at $12 \%$ | Net Cash Flow |  | t Value t Cash ow |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.893 | \$80,000 | \$ |  |
| 2 | 0.797 | 60,000 |  |  |
| 3 | 0.712 | 60,000 |  |  |
| 4 | 0.636 | 60,000 |  |  |
| 5 | 0.567 | 60,000 |  |  |
| Total |  | \$320,000 | \$ |  |
| Amount to be invested in equipment |  |  | \$ | 180,000 |
| Excess of present value over amount to be invested |  |  | \$ |  |

(2) Compute the present value index for the new equipment. (Round to two decimal places.)
(3) Based on the net present value method, should management acquire the new machine?

